Graphene oxide-molybdenum oxide composite with improved hole transport in bulk heterojunction solar cells

被引:9
作者
Aatif, Md. [1 ,2 ]
Patel, Jessica [3 ]
Sharma, Abhishek [1 ,2 ]
Chauhan, Mihirsinh [4 ]
Kumar, Gaurav [2 ,5 ]
Pal, Prabir [2 ,5 ]
Chand, Suresh [1 ,2 ]
Tripathi, Brijesh [3 ]
Pandey, Manoj Kumar [3 ]
Tiwari, J. P. [1 ,2 ]
机构
[1] CSIR Natl Phys Lab, FOED Grp, Adv Mat & Devices Metrol Div, New Delhi 110012, India
[2] CSIR HRDC Campus, Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] Pandit Deendayal Petr Univ, Sch Technol, Dept Sci, Gandhinagar 382007, India
[4] Pandit Deendayal Petr Univ, Sch Technol, Dept Solar Energy, Gandhinagar 382007, India
[5] CSIR Natl Phys Lab, Dr KS Krishnan Rd, New Delhi 110012, India
关键词
HIGH-PERFORMANCE; DRUG-DELIVERY; EFFICIENT; LAYER; NANOSHEETS; EXTRACTION; MOS2; RECOMBINATION; INTERFACE; ANODE;
D O I
10.1063/1.5095702
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Solution processed hole transport layer based on graphene oxide (GO) and molybdenum oxide (MoO3) composite in bulk heterojunction organic solar cell (OSC) devices offer low cost, improved performance compared to conventional organic solar cells. Here, we have made a study comparing the power conversion efficiency (PCE) of this composite to the pristine GO and MoO3 as a hole transport layer in the organic photovoltaics. The devices with the composite shows optimized performance with PCE of similar to 5.1%, while the pristine GO and MoO3 display 1.59% and 2.5%, respectively. These differences are attributed to the lower short circuit current (J(sc)) and thereby lower fill factor (FF) with respect to the GO and MoO3. Nevertheless, the composite based devices exhibits improved optical absorption and photoluminescence quenching as compared to pristine interface layer. This study intends to highlight efficient modulation of the interface barrier of hole transport layer which allow us to give faster transport and extraction of the charge carrier efficiently at the electrodes.
引用
收藏
页数:10
相关论文
共 55 条
[1]   High-performance organic solar cells utilizing graphene oxide in the active and hole transport layers [J].
Amollo, Tabitha A. ;
Mola, Genene T. ;
Nyamori, Vincent O. .
SOLAR ENERGY, 2018, 171 :83-91
[2]   Enhanced Charge Carrier Mobility in Two-Dimensional High Dielectric Molybdenum Oxide [J].
Balendhran, Sivacarendran ;
Deng, Junkai ;
Ou, Jian Zhen ;
Walia, Sumeet ;
Scott, James ;
Tang, Jianshi ;
Wang, Kang L. ;
Field, Matthew R. ;
Russo, Salvy ;
Zhuiykov, Serge ;
Strano, Michael S. ;
Medhekar, Nikhil ;
Sriram, Sharath ;
Bhaskaran, Madhu ;
Kalantar-zadeh, Kourosh .
ADVANCED MATERIALS, 2013, 25 (01) :109-114
[3]   Morphology-Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells [J].
Beiley, Zach M. ;
Hoke, Eric T. ;
Noriega, Rodrigo ;
Dacuna, Javier ;
Burkhard, George F. ;
Bartelt, Jonathan A. ;
Salleo, Alberto ;
Toney, Michael F. ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2011, 1 (05) :954-962
[4]   Hybrid Graphene-Metal Oxide Solution Processed Electron Transport Layers for Large Area High-Performance Organic Photovoltaics [J].
Beliatis, Michail J. ;
Gandhi, Keyur K. ;
Rozanski, Lynn J. ;
Rhodes, Rhys ;
McCafferty, Liam ;
Alenezi, Mohammad R. ;
Alshammari, Abdullah S. ;
Mills, Christopher A. ;
Jayawardena, K. D. G. Imalka ;
Henley, Simon J. ;
Silva, S. Ravi P. .
ADVANCED MATERIALS, 2014, 26 (13) :2078-2083
[5]   Investigating the influence of charge transport on the performance of PTB7:PC71BM based organic solar cells [J].
Chauhan, Mihirsinh ;
Sharma, Abhishek ;
Patel, Jessica ;
Aatif, M. ;
Chand, Suresh ;
Pandey, Manoj Kumar ;
Kumar, Manoj ;
Tiwari, J. P. ;
Tripathi, Brijesh .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (25) :17304-17312
[6]   Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications [J].
Chen, Da ;
Feng, Hongbin ;
Li, Jinghong .
CHEMICAL REVIEWS, 2012, 112 (11) :6027-6053
[7]   Thermo-cleavable fullerene materials as buffer layers for efficient polymer solar cells [J].
Chen, Shan ;
Du, Xiaoyan ;
Ye, Gang ;
Cao, Jiamin ;
Sun, Hao ;
Xiao, Zuo ;
Ding, Liming .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (37) :11170-11176
[8]   Noncovalent phosphorylation of graphene oxide with improved hole transport in high-efficiency polymer solar cells [J].
Chen, Xiang ;
Liu, Qing ;
Zhang, Mengmeng ;
Ju, Huanxin ;
Zhu, Junfa ;
Qiao, Qiquan ;
Wang, Mingtai ;
Yang, Shangfeng .
NANOSCALE, 2018, 10 (31) :14840-14846
[9]   Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes [J].
de Jong, MP ;
van IJzendoorn, LJ ;
de Voigt, MJA .
APPLIED PHYSICS LETTERS, 2000, 77 (14) :2255-2257
[10]   Folic-Acid-Functionalized Graphene Oxide Nanocarrier: Synthetic Approaches, Characterization, Drug Delivery Study, and Antitumor Screening [J].
de Sousa, Marcelo ;
Visani de Luna, Luis Augusto ;
Fonseca, Leandro Carneiro ;
Giorgio, Selma ;
Alves, Oswaldo Luiz .
ACS APPLIED NANO MATERIALS, 2018, 1 (02) :922-+