A prediction model based on DNA methylation biomarkers and radiological characteristics for identifying malignant from benign pulmonary nodules

被引:30
作者
Xing, Wenqun [1 ]
Sun, Haibo [1 ]
Yan, Chi [2 ,3 ]
Zhao, Chengzhi [2 ,3 ]
Wang, Dongqing [2 ,3 ]
Li, Mingming [4 ]
Ma, Jie [2 ,3 ]
机构
[1] Zhengzhou Univ, Affiliated Canc Hosp, Dept Thorac Surg, Henan Canc Hosp, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ, Henan Canc Hosp, Affiliated Canc Hosp, Dept Mol Pathol, 127 Dongming Rd, Zhengzhou 450008, Henan, Peoples R China
[3] Henan Key Lab Mol Pathol, Zhengzhou, Henan, Peoples R China
[4] Excellen Med Technol Co Ltd, Beijing, Peoples R China
关键词
CT; DNA methylation; Biomarkers; Lung cancer; Pulmonary nodules; LUNG-CANCER; MARKER PANEL; PROBABILITY; PLASMA; CLASSIFICATION; VALIDATION; TRIAL;
D O I
10.1186/s12885-021-08002-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Lung cancer remains the leading cause of cancer deaths across the world. Early detection of lung cancer by low-dose computed tomography (LDCT) can reduce the mortality rate. However, making a definitive preoperative diagnosis of malignant pulmonary nodules (PNs) found by LDCT is a clinical challenge. This study aimed to develop a prediction model based on DNA methylation biomarkers and radiological characteristics for identifying malignant pulmonary nodules from benign PNs. Methods We assessed three DNA methylation biomarkers (PTGER4, RASSF1A, and SHOX2) and clinically-relevant variables in a training cohort of 110 individuals with PNs. Four machine-learning-based prediction models were established and compared, including the K-nearest neighbors (KNN), random forest (RF), support vector machine (SVM), and logistic regression (LR) algorithms. Variables of the best-performing algorithm (LR) were selected through stepwise use of Akaike's information criterion (AIC). The constructed prediction model was compared with the methylation biomarkers and the Mayo Clinic model using the non-parametric approach of DeLong et al. with the area under a receiver operator characteristic curve (AUC) analysis. Results A prediction model was finally constructed based on three DNA methylation biomarkers and one radiological characteristic for identifying malignant from benign PNs. The developed prediction model achieved an AUC value of 0.951 in malignant PNs diagnosis, significantly higher than the three DNA methylation biomarkers (0.912, 95% CI:0.843-0.958, p = 0.013) or Mayo Clinic model (0.823, 95% CI:0.739-0.890, p = 0.001). Validation of the prediction model in the testing cohort of 100 subjects with PNs confirmed the diagnostic value. Conclusion We have shown that integrating DNA methylation biomarkers and radiological characteristics could more accurately identify lung cancer in subjects with CT-found PNs. The prediction model developed in our study may provide clinical utility in combination with LDCT to improve the over-all diagnosis of lung cancer.
引用
收藏
页数:11
相关论文
共 27 条
[1]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[2]   An Epigenetic Marker Panel for Detection of Lung Cancer Using Cell-Free Serum DNA [J].
Begum, Shahnaz ;
Brait, Mariana ;
Dasgupta, Santanu ;
Ostrow, Kimberly L. ;
Zahurak, Marianna ;
Carvalho, Andre L. ;
Califano, Joseph A. ;
Goodman, Steven N. ;
Westra, William H. ;
Hoque, Mohammad Obaidul ;
Sidransky, David .
CLINICAL CANCER RESEARCH, 2011, 17 (13) :4494-4503
[3]   Baseline results of the Depiscan study: A French randomized pilot trial of lung cancer screening comparing dose CT scan (LDCT) and chest X-ray (CXR) [J].
Blanchon, Thierry ;
Brechot, Jeanne-Marie ;
Grenier, Philippe A. ;
Ferretti, Gilbert R. ;
Lemarie, Etienne ;
Milleron, Bernard ;
Chague, Dorninique ;
Laurent, Franqois ;
Martineti, Yves ;
Beigelman-Aubry, Catherine ;
Blanchon, Franois ;
Revel, Marie-Pierre ;
Friard, Sylvie ;
Remy-Jardin, Martine ;
Vasile, Manuela ;
Santelmo, Nicola ;
Lecalier, Alain ;
Lefebure, Patricia ;
Moro-Sibilot, Denis ;
Breton, Jean-Luc ;
Carette, Marie-France ;
Brambilla, Christian ;
Fournel, Francois ;
Kieffer, Alexia ;
Frija, Guy ;
Flahault, Antoine .
LUNG CANCER, 2007, 58 (01) :50-58
[4]   Comparison of Veterans Affairs, Mayo, Brock classification models and radiologist diagnosis for classifying the malignancy of pulmonary nodules in Chinese clinical population [J].
Cui, Xiaonan ;
Heuvelmans, Marjolein A. ;
Han, Daiwei ;
Zhao, Yingru ;
Fan, Shuxuan ;
Zheng, Sunyi ;
Sidorenkov, Grigory ;
Groen, Harry J. M. ;
Dorrius, Monique D. ;
Oudkerk, Matthijs ;
de Bock, Geertruida H. ;
Vliegenthart, Rozemarijn ;
Ye, Zhaoxiang .
TRANSLATIONAL LUNG CANCER RESEARCH, 2019, 8 (05) :605-+
[5]  
Diederich S, 2006, Cancer Imaging, V6, pS42, DOI 10.1102/1470-7330.2006.9004
[6]   Non-Small Cell Lung Cancer, Version 1.2015 [J].
Ettinger, David S. ;
Wood, Douglas E. ;
Akerley, Wallace ;
Bazhenova, Lyudmila A. ;
Borghaei, Hossein ;
Camidge, David Ross ;
Cheney, Richard T. ;
Chirieac, Lucian R. ;
D'Amico, Thomas A. ;
Demmy, Todd L. ;
Dilling, Thomas J. ;
Govindan, Ramaswamy ;
Grannis, Frederic W., Jr. ;
Horn, Leora ;
Jahan, Thierry M. ;
Komaki, Ritsuko ;
Kris, Mark G. ;
Krug, Lee M. ;
Lackner, Rudy P. ;
Lanuti, Michael ;
Lilenbaum, Rogerio ;
Lin, Jules ;
Loo, Billy W., Jr. ;
Martins, Renato ;
Otterson, Gregory A. ;
Patel, Jyoti D. ;
Pisters, Katherine M. ;
Reckamp, Karen ;
Riely, Gregory J. ;
Rohren, Eric ;
Schild, Steven ;
Shapiro, Theresa A. ;
Swanson, Scott J. ;
Tauer, Kurt ;
Yang, Stephen C. ;
Gregory, Kristina ;
Hughes, Miranda .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2014, 12 (12) :1738-1761
[7]   DNA Methylation in Cancer: A Gene Silencing Mechanism and the Clinical Potential of Its Biomarkers [J].
Fukushige, Shinichi ;
Horii, Akira .
TOHOKU JOURNAL OF EXPERIMENTAL MEDICINE, 2013, 229 (03) :173-185
[8]   The National Lung Screening Trial: Overview and Study Design [J].
Gatsonis, Constantine A. .
RADIOLOGY, 2011, 258 (01) :243-253
[9]   A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules [J].
Gould, Michael K. ;
Ananth, Lakshmi ;
Barnett, Paul G. .
CHEST, 2007, 131 (02) :383-388
[10]   Sample size estimation in diagnostic test studies of biomedical informatics [J].
Hajian-Tilaki, Karimollah .
JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 48 :193-204