Classification of Harish-Chandra modules over some Lie algebras related to the Virasoro algebra

被引:15
作者
Liu, Dong [1 ]
机构
[1] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
关键词
Virasoro algebra; Schrodinger-Virasoro algebra; Harish-Chandra module; SCHRODINGER INVARIANCE; CONJECTURE; SPACE;
D O I
10.1016/j.jalgebra.2015.09.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide a uniform method to thoroughly classify all Harish-Chandra modules over some Lie algebras related to the Virasoro algebras. We first classify such modules over the Lie algebra W(rho) [s] for s = 0, 1/2. With this result and method, we can also do such works for some Lie algebras related to the Virasoro algebra, including the several kinds of Schrodinger Virasoro Lie algebras, which are open up to now. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:548 / 559
页数:12
相关论文
共 34 条
[1]   MODULI SPACES OF CURVES AND REPRESENTATION-THEORY [J].
ARBARELLO, E ;
DECONCINI, C ;
KAC, VG ;
PROCESI, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (01) :1-36
[2]  
Bilig Y, 2003, CAN MATH BULL, V46, P529
[3]  
Dobrev V. K., 1997, Reports on Mathematical Physics, V39, P201, DOI 10.1016/S0034-4877(97)88001-9
[4]   Singular vectors and invariant equations for the Schrodinger algebra in n aparts per thousandyen 3 space dimensions. The general case [J].
Dobrev, V. K. ;
Stoimenov, S. .
PHYSICS OF ATOMIC NUCLEI, 2010, 73 (11) :1916-1924
[5]  
Fuks D. B., 1986, Cohomology of Infinite Dimensional Lie algebras
[6]   LOW-DIMENSIONAL COHOMOLOGY GROUPS OF THE LIE ALGEBRAS W(a, b) [J].
Gao, Shoulan ;
Jiang, Cuipo ;
Pei, Yufeng .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (02) :397-423
[7]   Simple Harish-Chandra modules, intermediate series modules, and Verma modules over the loop-Virasoro algebra [J].
Guo, Xiangqian ;
Lu, Rencai ;
Zhao, Kaiming .
FORUM MATHEMATICUM, 2011, 23 (05) :1029-1052
[8]   SCHRODINGER INVARIANCE AND STRONGLY ANISOTROPIC CRITICAL SYSTEMS [J].
HENKEL, M .
JOURNAL OF STATISTICAL PHYSICS, 1994, 75 (5-6) :1023-1061
[9]   Schrodinger invariance and spacetime symmetries [J].
Henkel, M ;
Unterberger, J .
NUCLEAR PHYSICS B, 2003, 660 (03) :407-435
[10]   Supersymmetnic extensions of Schrodinger-invariance [J].
Henkel, Malte ;
Unterberger, Jeremie .
NUCLEAR PHYSICS B, 2006, 746 (03) :155-201