Thermal transport of isotopic-superlattice graphene nanoribbons with zigzag edge

被引:74
作者
Ouyang, T. [1 ]
Chen, Y. P.
Yang, K. K.
Zhong, J. X.
机构
[1] Xiangtan Univ, Lab Quantum Engn & Micronano Energy Technol, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
CONDUCTIVITY; PERFORMANCE; DEVICES;
D O I
10.1209/0295-5075/88/28002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Thermal transport properties of isotopic-superlattice graphene nanoribbons with zigzag edge (IS-ZGNRs) are investigated. We find that by isotopic superlattice modulation the thermal conductivity of a graphene nanoribbon can be reduced significantly. The thermal transport property of the IS-ZGNRs strongly depends on the superlattice period length and the isotopic mass. As the superlattice period length decreases, the thermal conductivity undergoes a transition from decreasing to increasing. This unique phenomenon is explained by analyzing the phonon transmission coefficient. While the effect of isotopic mass on the conductivity is monotone. Larger mass difference induces smaller thermal conductivity. In addition, the influence of the geometry size is also discussed. The results indicate that isotopic superlattice modulation offers an available way for improving the thermoelectric performance of graphene nanoribbons. Copyright (C) EPLA, 2009
引用
收藏
页数:5
相关论文
共 25 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Thermoelectric properties of bismuth telluride nanowires in the constant relaxation-time approximation [J].
Bejenari, I. ;
Kantser, V. .
PHYSICAL REVIEW B, 2008, 78 (11)
[3]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[6]   Electron transport of L-shaped graphene nanoribbons [J].
Chen, Yuan Ping ;
Xie, Yue E. ;
Yan, Xiao Hong .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (06)
[7]   Asymmetric transport in asymmetric T-shaped graphene nanoribbons [J].
Chen, Yuan Ping ;
Xie, Yue E. ;
Sun, L. Z. ;
Zhong, Jianxin .
APPLIED PHYSICS LETTERS, 2008, 93 (09)
[8]   Giant thermoelectric effect in graphene [J].
Dragoman, D. ;
Dragoman, M. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[9]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191