Turbulence is an Ineffective Mixer when Schmidt Numbers Are Large

被引:22
作者
Buaria, Dhawal [1 ]
Clay, Matthew P. [2 ]
Sreenivasan, Katepalli R. [1 ,3 ,4 ]
Yeung, P. K. [2 ,5 ]
机构
[1] NYU, Tandon Sch Engn, New York, NY 11201 USA
[2] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[3] NYU, Dept Phys, New York, NY 10012 USA
[4] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[5] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.126.074501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We solve the advection-diffusion equation for a stochastically stationary passive scalar theta, in conjunction with forced 3D Navier-Stokes equations, using direct numerical simulations in periodic domains of various sizes, the largest being 8192(3). The Taylor-scale Reynolds number varies in the range 140-650 and the Schmidt number Sc nu/D in the range 1-512, where nu is the kinematic viscosity of the fluid and D is the molecular diffusivity of theta. Our results show that turbulence becomes an ineffective mixer when Sc is large. First, the mean scalar dissipation rate <chi > = 2D <vertical bar del theta vertical bar(2)>, when suitably nondimensionalized, decreases as 1/log Sc. Second, 1D cuts through the scalar field indicate increasing density of sharp fronts on larger scales, oscillating with large excursions leading to reduced mixing, and additionally suggesting weakening of scalar variance flux across the scales. The scaling exponents of the scalar structure functions in the inertial-convective range appear to saturate with respect to the moment order and the saturation exponent approaches unity as Sc increases, qualitatively consistent with 1D cuts of the scalar.
引用
收藏
页数:6
相关论文
共 40 条
[1]  
[Anonymous], 10 CHAPTERS TURBULEN
[2]   Instanton for the Kraichnan passive scalar problem [J].
Balkovsky, E ;
Lebedev, V .
PHYSICAL REVIEW E, 1998, 58 (05) :5776-5795
[4]   Burgers turbulence [J].
Bec, Jeremie ;
Khanin, Konstantin .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 447 (1-2) :1-66
[5]   High Schmidt number scalars in turbulence: Structure functions and Lagrangian theory [J].
Borgas, MS ;
Sawford, BL ;
Xu, S ;
Donzis, DA ;
Yeung, PK .
PHYSICS OF FLUIDS, 2004, 16 (11) :3888-3899
[6]   A Lagrangian study of turbulent mixing: forward and backward dispersion of molecular trajectories in isotropic turbulence [J].
Buaria, D. ;
Yeung, P. K. ;
Sawford, B. L. .
JOURNAL OF FLUID MECHANICS, 2016, 799 :352-382
[7]   Characteristics of backward and forward two-particle relative dispersion in turbulence at different Reynolds numbers [J].
Buaria, D. ;
Sawford, Brian L. ;
Yeung, P. K. .
PHYSICS OF FLUIDS, 2015, 27 (10)
[8]  
Buaria D., 2020, ARXIV200908370
[9]  
Buaria D., 2021, PHYS REV LETT, V126
[10]   Vortex stretching and enstrophy production in high Reynolds number turbulence [J].
Buaria, Dhawal ;
Bodenschatz, Eberhard ;
Pumir, Alain .
PHYSICAL REVIEW FLUIDS, 2020, 5 (10)