Algebraic Ricci solitons of three-dimensional Lorentzian Lie groups

被引:22
作者
Batat, W. [1 ]
Onda, K. [2 ]
机构
[1] Ecole Natl Polytech Oran, BP 1523, El Mnaouar Oran 31000, Algeria
[2] Shumei Univ, Fac Teacher Educ, Yachiyo 2760003, Japan
关键词
Lorentzian Lie groups; Left-invariant metrics; Algebraic Ricci solitons; METRICS;
D O I
10.1016/j.geomphys.2016.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study algebraic Ricci solitons of three-dimensional Lorentzian Lie groups. All algebraic Ricci solitons that we obtain are solvsolitons. In particular, we obtain new solitons on G(2), G(5), and G(6), and we prove that, contrary to the Riemannian case, Lorentzian Ricci solitons need not be algebraic Ricci solitons. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:138 / 152
页数:15
相关论文
共 23 条
  • [1] Homogeneous Ricci Solitons in Low Dimensions
    Arroyo, Romina M.
    Lafuente, Ramiro
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (13) : 4901 - 4932
  • [2] Three-dimensional Ricci solitons which project to surfaces
    Baird, Paul
    Danielo, Laurent
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 : 65 - 91
  • [3] Ricci solitons on Lorentzian manifolds with large isometry groups
    Batat, W.
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 : 1219 - 1227
  • [4] Locally Conformally Flat Lorentzian Gradient Ricci Solitons
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) : 1196 - 1212
  • [5] THREE-DIMENSIONAL LORENTZIAN HOMOGENEOUS RICCI SOLITONS
    Brozos-Vazquez, M.
    Calvaruso, G.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2012, 188 (01) : 385 - 403
  • [6] Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds
    Calvaruso, G.
    [J]. GEOMETRIAE DEDICATA, 2007, 127 (01) : 99 - 119
  • [7] Homogeneous structures on three-dimensional Lorentzian manifolds
    Calvaruso, Giovanni
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (04) : 1279 - 1291
  • [8] Chow B., 2004, Mathematical Surveys and Monographs, V110
  • [9] Cordero L.A., 1997, Rend. Mat., Serie VII, V17, P129
  • [10] di Cerbo L.F., ARXIV07110465V1