Global Stability of Fractional Order Coupled Systems with Impulses via a Graphic Approach

被引:13
作者
Zhang, Bei [1 ]
Xia, Yonghui [2 ]
Zhu, Lijuan [2 ]
Liu, Haidong [3 ]
Gu, Longfei [4 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362000, Fujian, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
[4] Linyi Univ, Dept Math, Linyi 276000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
neural networks; global stability; impulse; NEURAL-NETWORKS; DIFFERENTIAL-EQUATIONS; EXPONENTIAL STABILITY; TIME-DELAY; SYNCHRONIZATION; FINITE; MODELS;
D O I
10.3390/math7080744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the graph theory and stability theory of dynamical system, this paper studies the stability of the trivial solution of a coupled fractional-order system. Some sufficient conditions are obtained to guarantee the global stability of the trivial solution. Finally, a comparison between fractional-order system and integer-order system ends the paper.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   SAMPLED-DATA STATE ESTIMATION FOR NEURAL NETWORKS WITH ADDITIVE TIME-VARYING DELAYS [J].
Ali, M. Syed ;
Gunasekaran, N. ;
Cao, Jinde .
ACTA MATHEMATICA SCIENTIA, 2019, 39 (01) :195-213
[3]   Non-fragile synchronisation of mixed delayed neural networks with randomly occurring controller gain fluctuations [J].
Ali, M. Syed ;
Gunasekaran, N. ;
Agalya, R. ;
Joo, Young Hoon .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2018, 49 (16) :3354-3364
[4]   Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Levy Stable Processes [J].
Anderson, Johan ;
Moradi, Sara ;
Rafiq, Tariq .
ENTROPY, 2018, 20 (10)
[5]   A fractional Fokker-Planck model for anomalous diffusion [J].
Anderson, Johan ;
Kim, Eun-jin ;
Moradi, Sara .
PHYSICS OF PLASMAS, 2014, 21 (12)
[6]   Synchronization of chaotic nonlinear continuous neural networks with time-varying delay [J].
Balasubramaniam, P. ;
Chandran, R. ;
Theesar, S. Jeeva Sathya .
COGNITIVE NEURODYNAMICS, 2011, 5 (04) :361-371
[7]   Adaptive synchronization of fractional-order memristor-based neural networks with time delay [J].
Bao, Haibo ;
Park, Ju H. ;
Cao, Jinde .
NONLINEAR DYNAMICS, 2015, 82 (03) :1343-1354
[8]   Stability analysis for coupled systems with time delay on networks [J].
Chen, Hao ;
Sun, Jitao .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (03) :528-534
[9]   Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks [J].
Chen, Jiejie ;
Zeng, Zhigang ;
Jiang, Ping .
NEURAL NETWORKS, 2014, 51 :1-8
[10]   Anti-Synchronization of a Class of Chaotic Systems with Application to Lorenz System: A Unified Analysis of the Integer Order and Fractional Order [J].
Chen, Liang ;
Huang, Chengdai ;
Liu, Haidong ;
Xia, Yonghui .
MATHEMATICS, 2019, 7 (06)