Existence of Ground State Sign-Changing Solutions of Fractional Kirchhoff-Type Equation with Critical Growth

被引:1
作者
Guan, Wen [1 ,2 ]
Huo, Hai-Feng [2 ]
机构
[1] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Gansu, Peoples R China
[2] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
关键词
Sign-changing solution; Non-local integrodifferential operator; Variational methods; SCHRODINGER-POISSON SYSTEM; NONLOCAL ELLIPTIC-EQUATIONS; ENERGY NODAL SOLUTION; ASYMPTOTIC-BEHAVIOR; ANOMALOUS DIFFUSION; MULTIPLE SOLUTIONS; INVARIANT-SETS; DYNAMICS;
D O I
10.1007/s00245-021-09763-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following fractional Kirchhoff-type equation {-(a + b integral(RN) integral(RN) vertical bar u(x) - u(y)vertical bar(2) K (x - y)dxdy)L(K)u = vertical bar u vertical bar(2 alpha)*(-2) u + mu f(u), x is an element of Omega, u = 0, x is an element of R-N\Omega, where Omega subset of R-N is a bounded domain with a smooth boundary, alpha is an element of (0, 1), 2 alpha < N < 4 alpha, 2(alpha)(*)is the fractional critical Sobolev exponent and mu, a, b > 0; LK is nonlocal integrodifferential operator. Under suitable conditions on f, for mu large enough, by using constraint variational method and the quantitative deformation lemma, we obtain a ground state sign-changing (or nodal) solution to this problem, and its energy is strictly larger than twice that of the ground state solutions.
引用
收藏
页码:S99 / S121
页数:23
相关论文
共 57 条
  • [1] Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion
    Abe, S
    Thurner, S
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) : 403 - 407
  • [2] Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains
    Alves, Claudianor O.
    Souto, Marco A. S.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1153 - 1166
  • [3] Sign-Changing Solutions for a Class of Zero Mass Nonlocal Schrodinger Equations
    Ambrosio, Vincenzo
    Figueiredo, Giovany M.
    Isernia, Teresa
    Bisci, Giovanni Molica
    [J]. ADVANCED NONLINEAR STUDIES, 2019, 19 (01) : 113 - 132
  • [4] (Super)Critical nonlocal equations with periodic boundary conditions
    Ambrosio, Vincenzo
    Mawhin, Jean
    Bisci, Giovanni Molica
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (04): : 3723 - 3751
  • [5] [Anonymous], 2012, NONLINEAR PARTIAL DI
  • [6] Bisci GM, 2016, ENCYCLOP MATH APPL, V162
  • [7] On a fractional degenerate Kirchhoff-type problem
    Bisci, Giovanni Molica
    Vilasi, Luca
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)
  • [8] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260
  • [9] ON THE NON-LINEAR VIBRATION PROBLEM OF THE ELASTIC STRING
    CARRIER, GF
    [J]. QUARTERLY OF APPLIED MATHEMATICS, 1945, 3 (02) : 157 - 165
  • [10] Multiplicity of sign-changing solutions for Kirchhoff-type equations
    Cassani, Daniele
    Liu, Zhisu
    Tarsi, Cristina
    Zhang, Jianjun
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 186 : 145 - 161