High temperature polymer electrolyte membrane achieved by grafting poly (1-vinylimidazole) on polysulfone for fuel cells application

被引:50
作者
Bai, Huijuan [1 ]
Wang, Haining [1 ]
Zhang, Jin [1 ]
Zhang, Jujia [1 ]
Lu, Shanfu [1 ]
Xiang, Yan [1 ]
机构
[1] Beihang Univ, Sch Space & Environm, Beijing Key Lab Bioinspired Energy Mat & Devices, Beijing 100191, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
poly(1-vinylimidazole); Micro-phase separation structure; Mechanical properties; Proton conductivity; Fuel cell; PROTON-EXCHANGE MEMBRANE; POLY(ARYLENE ETHER SULFONE); CROSS-LINKING; ION-TRANSPORT; POLYBENZIMIDAZOLE; CONDUCTION; COMPOSITES; MORPHOLOGY; COPOLYMERS; KETONE);
D O I
10.1016/j.memsci.2019.117395
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Phosphoric acid (PA)-doped high temperature polymer electrolyte membranes (HT-PEMs) are crucial materials for HT-PEM fuel cells (HT-PEMFCs). However, the development of HT-PEMs suffers from the trade-off between proton conductivity and mechanical strength. High proton conductivity requires a high doping level of PA, and PA acts as a plasticizer that reduces the mechanical properties. Here, a new strategy is employed to address the unresolved challenges; the strategy is to graft poly(1-vinylimidazole) as PA doping sites on the polysulfone backbone. This is achieved via atom transfer radical polymerization. High proton conductivity is achieved because of the formation of micro-phase separated structures, and the mechanical properties are retained because of the reduced plasticizing effect, which is caused by the separation of PA adsorption sites and the polymer backbone. The prepared PA-doped membranes have excellent proton conductivity of 127 mS cm(-1) at 160 degrees C and outstanding tensile strength of 7.94 MPa. Meanwhile, single H-2-O-2 cell performance with the optimized membrane is impressive, reaching a peak power density of 559 mW cm(-2) at 160 degrees C. More importantly, this work provides new insight into solving the trade-off between proton transport and mechanical strength for PA-doped HT-PEMs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells
    Henkensmeier, Dirk
    Ngoc My Hanh Duong
    Brela, Mateusz
    Dyduch, Karol
    Michalak, Artur
    Jankova, Katja
    Cho, Hyeongrae
    Jang, Jong Hyun
    Kim, Hyoung-Juhn
    Cleemann, Lars N.
    Li, Qingfeng
    Jensen, Jens Oluf
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (27) : 14389 - 14400
  • [32] Stability enhancement of polymer electrolyte membrane fuel cells based on a sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) composite membrane
    Sung, Kyung A.
    Kim, Wan-Keun
    Oh, Keun-Hwan
    Choo, Min-Ju
    Nam, Kwan-Woo
    Park, Jung-Ki
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2483 - 2489
  • [33] Facile synthesis and properties of poly(ether ketone cardo)s bearing heterocycle groups for high temperature polymer electrolyte membrane fuel cells
    Liu, Ruihong
    Wang, Jin
    Che, Xuefu
    Wang, Ting
    Aili, David
    Li, Qingfeng
    Yang, Jingshuai
    JOURNAL OF MEMBRANE SCIENCE, 2021, 636
  • [34] Structural Characterization of Membrane-Electrode-Assemblies in High Temperature Polymer Electrolyte Membrane Fuel Cells
    Bodner, Merit
    Bentzen, Janet Jonna
    Dah, Vedrana Andersen
    Alfaro, Silvia M.
    Steenberg, Thomas
    Hjuler, Hans Aage
    Simonsen, Soren Bredmose
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (14) : F1105 - F1111
  • [35] Polybenzimidazole/Inorganic Composite Membrane With Advanced Performance for High Temperature Polymer Electrolyte Membrane Fuel Cells
    Seo, Kwangwon
    Seo, Jongchul
    Nam, Ki-Ho
    Han, Haksoo
    POLYMER COMPOSITES, 2017, 38 (01) : 87 - 95
  • [36] A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells
    Xu, C.
    Scott, K.
    Li, Q.
    Yang, J.
    Wu, X.
    FUEL CELLS, 2013, 13 (02) : 118 - 125
  • [37] In Situ Polymerization-Mediated Cross-Linking of the MOF Using Poly(1-vinylimidazole) in SPEEK Fuel Cells
    Ray, Madhuparna
    Samantaray, Paresh Kumar
    Negi, Yuvraj Singh
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (07) : 4704 - 4715
  • [38] Nanostructured composite membrane with cross-linked sulfonated poly (arylene ether ketone)/silica for high-performance polymer electrolyte membrane fuel cells under low relative humidity
    Bae, Insung
    Oh, Keun-Hwan
    Yun, Minhyuk
    Kang, Min Kwan
    Song, Hyun Hoon
    Kim, Hyuk
    JOURNAL OF MEMBRANE SCIENCE, 2018, 549 : 567 - 574
  • [39] New sulfonated polysulfone co-polymer membrane for low temperature fuel cells
    Tavares, AC
    Pedicini, R
    Gatto, I
    Dubitsky, YA
    Zaopo, A
    Passalacqua, E
    JOURNAL OF NEW MATERIALS FOR ELECTROCHEMICAL SYSTEMS, 2003, 6 (04) : 211 - 215
  • [40] The influence of CO on the current density distribution of high temperature polymer electrolyte membrane fuel cells
    Boaventura, M.
    Sander, H.
    Friedrich, K. A.
    Mendes, A.
    ELECTROCHIMICA ACTA, 2011, 56 (25) : 9467 - 9475