Local stress regularity in scalar nonconvex variational problems

被引:35
作者
Carstensen, C
Müller, S
机构
[1] Vienna Univ Technol, Inst Appl Math & Numer Anal, A-1040 Vienna, Austria
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
nonconvex minimization; regularization; relaxed problem; stress regularity;
D O I
10.1137/S0036141001396436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In light of applications to relaxed problems in the calculus of variations, this paper addresses convex but not necessarily strictly convex minimization problems. A class of energy functionals is described for which any stress field sigma in L-q (Omega) with div sigma in W-1,W-p' (Omega) belongs to W-loc(1,q)(Omega). The condition on div sigma holds, for example, for solutions of the Euler Lagrange equations involving additional lower-order terms. Applications include the scalar double-well potential, an optimal design problem, a vectorial double-well problem in a compatible case, and Hencky elastoplasticity with hardening. If the energy density depends only on the modulus of the gradient, we also show regularity up to the boundary.
引用
收藏
页码:495 / 509
页数:15
相关论文
共 23 条
[1]   Adaptive numerical analysis in primal elastoplasticity with hardening [J].
Alberty, J ;
Carstensen, C ;
Zarrabi, D .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 171 (3-4) :175-204
[2]  
[Anonymous], 1969, LECT CALCULUS VARIAT
[3]   Regularity of quasiconvex envelopes [J].
Ball, JM ;
Kirchheim, B ;
Kristensen, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 11 (04) :333-359
[4]  
Bolza O, 1906, T AM MATH SOC, V7, P314, DOI 10.2307/1986442
[5]  
Brezzi F., 1991, SPRINGER SER COMPUT, V15
[6]   Adaptive algorithms for scalar non-convex variational problems [J].
Carstensen, C ;
Plechac, P .
APPLIED NUMERICAL MATHEMATICS, 1998, 26 (1-2) :203-216
[7]   Numerical analysis of compatible phase transitions in elastic solids [J].
Carstensen, C ;
Plechác, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (06) :2061-2081
[8]   Numerical solution of the scalar double-well problem allowing microstructure [J].
Carstensen, C ;
Plechac, P .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :997-1026
[9]  
CARSTENSEN C, 2001, GUARANTEED POSTERIOR
[10]   ON MINIMA OF A FUNCTIONAL OF THE GRADIENT - NECESSARY CONDITIONS [J].
CELLINA, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (04) :337-341