Local solutions for stochastic Navier stokes equations

被引:25
作者
Bensoussan, A
Frehse, J
机构
[1] Univ Paris 09, F-75001 Paris, France
[2] CNES, F-75001 Paris, France
[3] Univ Bonn, Inst Angew Math, D-5300 Bonn, Germany
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2000年 / 34卷 / 02期
关键词
Navier Stokes equations; stochastic equations; abstract parabolic equations; Ito integral; local solution; Ito equation; Stokes operator; Functional equation; Mild solution; Random time;
D O I
10.1051/m2an:2000140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider local solutions for stochastic Navier Stokes equations, based on the approach of Von Wahl, for the deterministic case. We present several approaches of the concept, depending on the smoothness available. When smoothness is available, Ive can in someway reduce the stochastic equation to a deterministic one with a random parameter. In the general case, Ne mimic the concept of local solution for stochastic differential equations.
引用
收藏
页码:241 / 273
页数:33
相关论文
共 9 条
  • [1] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [2] Bensoussan A., 1973, J. Funct. Anal, V13, P195, DOI [10.1016/0022-1236(73)90045-1, DOI 10.1016/0022-1236(73)90045-1]
  • [3] Da Prato G, 1992, STOCHASTIC EQUATIONS
  • [4] FLANDOLI F, 1994, MARTINGALE STATIONAR
  • [5] IKEDA N, 1981, STOCHASTIC EQUATIONS
  • [6] KARATZAS I, 1988, BROWNIAN DIFFERENTIA
  • [7] Lions J. L., 1969, QUELQUES METHODES RE
  • [8] Temam R., 1977, NAVIER STOKES EQUATI
  • [9] VONWAHL W, 1986, ASPECTS MATH