Design and comparative performance evaluation of chirped FBG dispersion compensation with DCF technique for DWDM optical transmission systems

被引:30
作者
Meena, M. L. [1 ]
Gupta, Raj Kumar [1 ]
机构
[1] Rajasthan Tech Univ, Dept Elect Engn, Kota, India
来源
OPTIK | 2019年 / 188卷
关键词
Bit error rate; Chirp Fiber Bragg grating; Dense wavelength division multiplexing; Dispersion compensation fiber erbium doped fiber amplifier; NEXT-GENERATION; FIBER; BAND; SINGLE;
D O I
10.1016/j.ijleo.2019.05.056
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we proposed an eight channels dense-wavelength-division-multiplexing (DWDM) optical transmission system using two different dispersion compensation techniques. Dispersion compensation mechanism limits the pulse broadening effects of transmitted signal in optical communication systems. To overcome pulse broadening effects, linear Chirped Fiber Bragg Grating (CFBG) and dispersion compensation fiber (DCF) schemes are modeled, analyzed and compared for investigate the performance of DWDM system. The proposed system is designed for 10Gbps using return-to-zero (RZ) modulation format with an erbium doped fiber amplifier (EDFA) over a channel length of 150 km single mode fiber (SMF) and 45 mm CFBG/30 km dispersion compensation fiber using Opti-System7.0 simulator. Performance of designed system is explore and compared in terms of eye-diagram, gain (dB), noise figure (dB), output power (dBm), output optical SNR (dB), bit error rate (BER) and Q-Factor by varying three different parameters which are channel length (km), input power (dBm) and attenuation coefficient (dB/km). It is observed that the CFBG gives the best performance as dispersion compensator for proposed DWDM long-haul transmission system.
引用
收藏
页码:212 / 224
页数:13
相关论文
共 35 条
[1]  
Arora O., 2012, MIT INT J ELECT COMM, V2, P1
[2]   Opportunities for Next-Generation Optical Access [J].
Breuer, Dirk ;
Geilhardt, Frank ;
Hulsermann, Ralf ;
Kind, Mario ;
Lange, Christoph ;
Monath, Thomas ;
Weis, Erik .
IEEE COMMUNICATIONS MAGAZINE, 2011, 49 (02) :S16-S24
[3]  
CHAKKOUR M, 2017, INT J OPTICS, V2017, P00001
[4]   Fiber transmission for sub-500-fs pulses using a dispersion-compensating fiber [J].
Chang, CC ;
Weiner, AM .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33 (09) :1455-1464
[5]   New pump wavelength of 1540-nm band for long-wavelength-band erbium-doped fiber amplifier (L-band EDFA) [J].
Choi, BH ;
Park, HH ;
Chu, MJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (10) :1272-1280
[6]   Standardization Trends and Prospective Views on the Next Generation of Broadband Optical Access Systems [J].
Effenberger, Frank J. ;
Kani, Jun-ichi ;
Maeda, Yoichi .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2010, 28 (06) :773-780
[7]   Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre [J].
Gnauck, AH ;
Garrett, LD ;
Danziger, Y ;
Levy, U ;
Tur, M .
ELECTRONICS LETTERS, 2000, 36 (23) :1946-1947
[8]   Dispersion-compensating fibers [J].
Grüner-Nielsen, L ;
Wandel, M ;
Kristensen, P ;
Jorgensen, C ;
Jorgensen, LV ;
Edvold, B ;
Pálsdóttir, B ;
Jakobsen, D .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (11) :3566-3579
[9]   Dispersion compensating fibers [J].
Grüner-Nielsen, L ;
Knudsen, SN ;
Edvold, B ;
Veng, T ;
Magnussen, D ;
Larsen, CC ;
Damsgaard, H .
OPTICAL FIBER TECHNOLOGY, 2000, 6 (02) :164-180
[10]   Compensation of third-order dispersion in a 100 Gb/s single channel system with in-line fibre Bragg gratings [J].
Gualda, EJ ;
Gómez-Pavón, LC ;
Torres, JP .
JOURNAL OF MODERN OPTICS, 2005, 52 (09) :1197-1206