Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance

被引:61
作者
Beaurepaire, Alexis L. [1 ,2 ]
Krieger, Klemens J. [3 ]
Moritz, Robin F. A. [1 ,4 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Biol, Halle, Germany
[2] Ctr Rech Provence Alpes Cote Azur, INRA, UR Abeilles & Environm 406, Avignon, France
[3] Bayer Anim Hlth GmbH, Leverkusen, Germany
[4] Entomol Univ Pretoria, Dept Zool, Pretoria, South Africa
关键词
Population genetics; Host-parasite coevolution; Population dynamics; Microsatellites; Varroa destructor; Apis mellifera; APIS-MELLIFERA L; JACOBSONI OUD; BROOD; ONTOGENY; WORKER;
D O I
10.1016/j.meegid.2017.02.011
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Varroa destructor is the most devastating parasite of the Western honeybee, Apis mellifera. In the light of the arm race opposing the host and its parasite, the population dynamics and genetic diversity of these organisms are key parameters. However, the life cycle of V. destructor is characterized by extreme inbreeding due to full sibling mating in the host brood cells. We here present an equation reflecting the evolution of inbreeding in such a clonal system, and compare our predictions with empirical data based on the analysis of seven microsatellite markers. This comparison revealed that the mites perform essentially incestuous mating in the beginning of the brood season. However, this pattern changes with the development of mite infestation. Despite the fact that the overall level of genetic diversity of the mites remained low through the season, multiple inbred lineages were identified in the mites we sampled in June. As a response to the decrease of brood availability and the increase of the parasite population in parallel in the colonies, these lineages recombined towards the end of the season as mites co-infest brood cells. Our results suggest that the ratio of the number of mite per brood cell in the colony determines the genetic structure of the populations of V. destructor. This intracolonial population dynamics has great relevance for the selection of acaricide resistance in V. destructor. If chemical treatments occur before the recombination phase, inbreeding will greatly enhance the fixation of resistance alleles at the colony level. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 41 条
[1]  
Anderson D.L, 2000, EXP APPL ACAROL
[2]  
[Anonymous], 1999, The genetical theory of natural selection: a complete variorum edition
[3]   Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana [J].
Beaurepaire, Alexis L. ;
Truong, Tuan A. ;
Fajardo, Alejandro C. ;
Dinh, Tam Q. ;
Cervancia, Cleofas ;
Moritz, Robin F. A. .
PLOS ONE, 2015, 10 (08)
[4]   Population modelling of Varroa jacobsoni Oud. [J].
Calis, JNM ;
Fries, I ;
Ryrie, SC .
APIDOLOGIE, 1999, 30 (2-3) :111-124
[5]  
Carius HJ, 2001, EVOLUTION, V55, P1136, DOI 10.1111/j.0014-3820.2001.tb00633.x
[6]   Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera [J].
Cornman, Scott R. ;
Schatz, Michael C. ;
Johnston, Spencer J. ;
Chen, Yan-Ping ;
Pettis, Jeff ;
Hunt, Greg ;
Bourgeois, Lanie ;
Elsik, Chris ;
Anderson, Denis ;
Grozinger, Christina M. ;
Evans, Jay D. .
BMC GENOMICS, 2010, 11
[7]   Statistical decision from k test series with particular focus on population genetics tools: A DIY notice [J].
De Meeus, Thierry .
INFECTION GENETICS AND EVOLUTION, 2014, 22 :91-93
[8]  
Dynes T.L, 2016, APIDOLOGIE
[9]   POPULATION GENETIC CONSEQUENCES OF SMALL POPULATION-SIZE - IMPLICATIONS FOR PLANT CONSERVATION [J].
ELLSTRAND, NC ;
ELAM, DR .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1993, 24 :217-242
[10]   Parasites and Pathogens of the Honeybee (Apis mellifera) and Their Influence on Inter-Colonial Transmission [J].
Forfert, Nadege ;
Natsopoulou, Myrsini E. ;
Frey, Eva ;
Rosenkranz, Peter ;
Paxton, Robert J. ;
Moritz, Robin F. A. .
PLOS ONE, 2015, 10 (10)