Proteomic analysis of Saccharomyces cerevisiae to study the effects of red wine polyphenols on oxidative stress

被引:6
作者
Lingua, Mariana S. [1 ]
Neme Tauil, Ricardo M. [3 ]
Batthyany, Carlos [4 ]
Wunderlin, Daniel A. [1 ,2 ]
Baroni, Maria V. [1 ,2 ]
机构
[1] ICYTAC, CONICET, Cordoba, Argentina
[2] Univ Nacl Cordoba, Dept Quim Organ, Fac Ciencias Quim, ISIDSA SECyT, Ciudad Univ, RA-5000 Cordoba, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Buenos Aires, DF, Argentina
[4] Univ Republica, Fac Med, Unidad Bioquim & Proteom Analit, Dept Bioquim,IPMON, Montevideo, Uruguay
来源
JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE | 2019年 / 56卷 / 09期
关键词
Proteomics; 2D-electrophoresis; Red wine polyphenols; Antioxidant capacity; Saccharomyces cerevisiae; ANTIOXIDANT ACTIVITY; PHENOLIC COMPOSITION; PROTEINS; GRAPE; TEA; RESISTANCE; DIGESTION; RESPONSES; CELLS;
D O I
10.1007/s13197-019-03883-7
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Understanding the molecular mechanisms underlying the "French paradox" has contributed to a growing interest in the investigation of the biological activity of red wine polyphenols (RWP). The main goal of this research is to provide valuable information on how RWP could exert their biological action at the cellular level. So, we report a proteomic analysis of S. cerevisiae exposed to both pro-oxidant (H2O2) and antioxidant (wine) agents. Cellular proteome analysis shows that RWP modify the level of certain proteins. Under both normal conditions (Wine treatment) and oxidative stress situations (Wine + H2O2 treatment), the proteins involved in the metabolism and biosynthesis of biomolecules were down-regulated, while one ribosomal protein was up-regulated, probably performing its ribosome-independent functions, and so contributing to the stress defense system. Considering this action mechanism, we suggest that RWP may be acting as mild pro-oxidants and, therefore, exerting a hormetic effect that leads to the strengthening of cells' antioxidant capacity.
引用
收藏
页码:4129 / 4138
页数:10
相关论文
共 50 条
[21]   Comparative genome analysis of a Saccharomyces cerevisiae wine strain [J].
Borneman, Anthony R. ;
Forgan, Angus H. ;
Pretorius, Isak S. ;
Chambers, Paul J. .
FEMS YEAST RESEARCH, 2008, 8 (07) :1185-1195
[22]   Fermentative capacity of Kluyveromyces marxianus and Saccharomyces cerevisiae after oxidative stress [J].
Arellano-Plaza, Melchor ;
Noriega-Cisneros, Ruth ;
Clemente-Guerrero, Monica ;
Carlos Gonzalez-Hernandez, Juan ;
Dayana Robles-Herrera, Patsy ;
Manzo-Avalos, Salvador ;
Saavedra-Molina, Alfredo ;
Gschaedler-Mathis, Anne .
JOURNAL OF THE INSTITUTE OF BREWING, 2017, 123 (04) :519-526
[23]   Astaxanthin enhances the longevity of Saccharomyces cerevisiae by decreasing oxidative stress and apoptosis [J].
Sudharshan, S. J. ;
Veerabhadrappa, Bhavana ;
Subramaniyan, Subasri ;
Dyavaiah, Madhu .
FEMS YEAST RESEARCH, 2019, 19 (01)
[24]   Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae [J].
Matsuo, Ryo ;
Mizobuchi, Shogo ;
Nakashima, Maya ;
Miki, Kensuke ;
Ayusawa, Dai ;
Fujii, Michihiko .
CURRENT GENETICS, 2017, 63 (05) :895-907
[25]   Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress [J].
de Sa, Rafael A. ;
de Castro, Frederico A. V. ;
Eleutherio, Elis C. A. ;
de Souza, Raquel M. ;
da Silva, Joaquim F. M. ;
Pereira, Marcos D. .
BRAZILIAN JOURNAL OF MICROBIOLOGY, 2013, 44 (03) :993-1000
[26]   Comparative study of Saccharomyces cerevisiae wine strains to identify potential marker genes correlated to desiccation stress tolerance [J].
Capece, Angela ;
Votta, Sonia ;
Guaragnella, Nicoletta ;
Zambuto, Marianna ;
Romaniello, Rossana ;
Romano, Patrizia .
FEMS YEAST RESEARCH, 2016, 16 (03)
[27]   Nucleolus as an oxidative stress sensor in the yeast Saccharomyces cerevisiae [J].
Lewinska, Anna ;
Wnuk, Maciej ;
Grzelak, Agnieszka ;
Bartosz, Grzegorz .
REDOX REPORT, 2010, 15 (02) :87-96
[28]   Adaptive response of Saccharomyces cerevisiae to hyperosmotic and oxidative stress [J].
Lu, FP ;
Wang, Y ;
Bai, DQ ;
Du, LX .
PROCESS BIOCHEMISTRY, 2005, 40 (11) :3614-3618
[29]   Cadmium-induced oxidative stress in Saccharomyces cerevisiae [J].
Muthukumar, Kannan ;
Nachiappan, Vasanthi .
INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2010, 47 (06) :383-387
[30]   Methylglyoxal induces glycation and oxidative stress in Saccharomyces cerevisiae [J].
Tupe, Rashmi S. ;
Vishwakarma, Anjali ;
Solaskar, Anamika ;
Prajapati, Anali .
ANNALS OF MICROBIOLOGY, 2019, 69 (11) :1165-1175