The Use of Capsuled Paraffin Wax in Low-Temperature Thermal Energy Storage Applications: An Experimental and Numerical Investigation

被引:9
|
作者
Ochman, Agnieszka [1 ]
Chen, Wei-Qin [1 ]
Blasiak, Przemyslaw [1 ]
Pomorski, Michal [1 ]
Pietrowicz, Slawomir [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Mech & Power Engn, Dept Thermodynam & Renewable Energy Sources, 27 Wybrzeze Wyspianskiego St, PL-50370 Wroclaw, Poland
关键词
low-temperature phase change material; paraffin wax; thermal energy storage; numerical modelling; scanning electron microscope; PHASE-CHANGE MATERIALS; HEAT-TRANSFER; TRIPLEX TUBE; PCM; SOLIDIFICATION; EXCHANGER; BEHAVIOR; MODEL;
D O I
10.3390/en14030538
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The article deals with the experimental and numerical thermal-flow behaviours of a low-temperature Phase Change Material (PCM) used in Thermal Energy Storage (TES) industrial applications. The investigated PCM is a composition that consists of a mixture of paraffin wax capsuled in a melamine-formaldehyde membrane and water, for which a phase change process occurs within the temperature range of 4 degrees C to 6 degrees C and the maximum heat storage capacity is equal to 72 kJ/kg. To test the TES capabilities of the PCM for operating conditions close to real ones, a series of experimental tests were performed on cylindrical modules with fixed heights of 250 mm and different outer diameters of 15, 22, and 28 mm, respectively. The module was tested in a specially designed wind tunnel where the Reynolds numbers of between 15,250 to 52,750 were achieved. In addition, a mathematical model of the analysed processes, based on the enthalpy porosity method, was proposed and validated. The temperature changes during the phase transitions that were obtained from the numerical analyses in comparison with the experimental results have not exceeded 20% of the relative error for the phase change region and no more than 10% for the rest. Additionally, the PCM was examined while using a Scanning Electron Microscope (SEM), which indicated no changes in the internal structure during phase transitions and a homogeneous structure, regardless of the tested temperature ranges.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Experimental and Numerical Investigation of Combined Sensible/Latent Thermal Energy Storage for High-Temperature Applications
    Geissbuehler, Lukas
    Zavattoni, Simone
    Barbato, Maurizio
    Zanganeh, Giw
    Haselbacher, Andreas
    Steinfeld, Aldo
    CHIMIA, 2015, 69 (12) : 799 - 803
  • [32] Numerical analysis of the effect of the iso-surface fin redistribution on the performance enhancement of a shell-and-tube latent heat thermal energy storage unit for low-temperature applications
    Dekhil, Mohamed Amine
    Tala, Jules Voguelin Simo
    Bulliard-Sauret, Odin
    Bougeard, Daniel
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [33] Experimental and numerical investigation of thermal energy storage with a finned tube
    Erek, A
    Ilken, Z
    Acar, MA
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2005, 29 (04) : 283 - 301
  • [34] Experimental and numerical investigation on shell and coil storage unit with biodegradable PCM for modular thermal battery applications
    Andrzejczyk, Rafal
    Muszynski, Tomasz
    Kowalczyk, Tomasz
    Saqib, Muhammad
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 185
  • [35] Experimental investigation and modelling of a low temperature PCM thermal energy exchange and storage system
    Rouault, Fabien
    Bruneau, Denis
    Sebastian, Patrick
    Lopez, Jerome
    ENERGY AND BUILDINGS, 2014, 83 : 96 - 107
  • [36] Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit
    Avci, Mete
    Yazici, M. Yusuf
    ENERGY CONVERSION AND MANAGEMENT, 2013, 73 : 271 - 277
  • [37] Experimental thermal behavior response of paraffin wax as storage unit
    J. P. Hadiya
    Ajit Kumar N. Shukla
    Journal of Thermal Analysis and Calorimetry, 2016, 124 : 1511 - 1518
  • [38] Numerical investigation of thermal energy storage unit integrated with indirect solar air heater
    Aghabali, Fatemeh
    Farhadi, Mousa
    Darzi, AhmadAli Rabienataj
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (16) : 2620 - 2639
  • [39] Experimental Study on Thermal Properties of Nano-TiO2 Embedded Paraffin (NEP) for Thermal Energy Storage Applications
    Kumar, P. Manoj
    Mylsamy, K.
    Saravanakumar, P. T.
    Anandkumar, R.
    Pranav, A.
    MATERIALS TODAY-PROCEEDINGS, 2020, 22 : 2153 - 2159
  • [40] Numerical and experimental investigation of paraffin wax melting in spherical cavity
    Ghosh, Debasree
    Guha, Chandan
    HEAT AND MASS TRANSFER, 2019, 55 (05) : 1427 - 1437