Random dyadic tilings of the unit square

被引:6
作者
Janson, S
Randall, D
Spencer, J
机构
[1] Uppsala Univ, Dept Math, SE-75106 Uppsala, Sweden
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
[3] NYU, Courant Inst, New York, NY 10012 USA
关键词
D O I
10.1002/rsa.10051
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A "dyadic rectangle" is a set of the form R = [a2(-s), (a + 1)2(-x)] x [b2(-1), (b + 1)2(-1)], where s and t are nonnegative integers. A dyadic tiling is a tiling of the unit square with dyadic rectangles. In this paper we study n-tilings, which consist of 2(n) nonoverlapping dyadic rectangles, each of area 2(-n), whose union is the unit square. We discuss some of the underlying combinatorial structures, provide some efficient methods for uniformly sampling from the set of n-tilings, and study some limiting properties of random tilings. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:225 / 251
页数:27
相关论文
共 15 条
[1]  
ALDOUS D, 1981, SPRINGER LECT NOTES, V986, P243
[2]  
Alon N., 2000, PROBABILISTIC METHOD
[3]  
Asmussen S., 1983, Branching processes
[4]  
Athreya K.B., 1972, BRANCHING PROCESS
[5]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[6]   Path coupling: A technique for proving rapid mixing in Markov chains [J].
Bubley, R ;
Dyer, M .
38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, :223-231
[7]  
Coffman EG, 2001, PROBAB THEORY REL, V120, P585
[8]  
Diaconis P., 1993, Ann. Appl. Probab., V3, P696, DOI [10.1214/aoap/1177005359, DOI 10.1214/AOAP/1177005359]
[9]  
Dyer M, 1998, RANDOM STRUCT ALGOR, V13, P285, DOI 10.1002/(SICI)1098-2418(199810/12)13:3/4<285::AID-RSA6>3.0.CO
[10]  
2-R