TRACKING NEUMANN DATA FOR STATIONARY FREE BOUNDARY PROBLEMS

被引:18
作者
Eppler, Karsten [1 ]
Harbrecht, Helmut [2 ]
机构
[1] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
[2] Univ Bonn, Inst Numer Simulat, D-53115 Bonn, Germany
关键词
free boundary problems; shape optimization; shape calculus; sufficient second order conditions; SHAPE OPTIMIZATION; INTEGRAL-EQUATIONS; WAVELET BASES; DOMAIN;
D O I
10.1137/080733760
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The present paper is dedicated to the verification of sufficient second order conditions for shape optimization problems that arise from stationary free boundary problems. We assume that the state satisfies the Dirichlet problem for the Poisson equation and track the Neumann data at the free boundary. The gradient and Hessian of the shape functional under consideration are computed. By analyzing the shape Hessian in case of matching data a sufficient criterion for its strict coercivity is derived. Strict coercivity implies stable minimizers and, in case of a Ritz-Galerkin method, existence and convergence of approximate shapes. By a fast boundary element method we realize an efficient numerical algorithm to solve the free boundary problem. Numerical experiments are carried out in three spatial dimensions.
引用
收藏
页码:2901 / 2916
页数:16
相关论文
共 33 条
[1]   ON THE GEOMETRIC FORM OF BERNOULLI CONFIGURATIONS [J].
ACKER, A .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1988, 10 (01) :1-14
[2]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[3]  
[Anonymous], MULTIRESOLUTION ANAL
[4]  
[Anonymous], 1998, MULTISKALEN WAVELET
[5]  
Colton D., 1983, INTEGRAL EQUATION ME
[6]   MULTILEVEL PRECONDITIONING [J].
DAHMEN, W ;
KUNOTH, A .
NUMERISCHE MATHEMATIK, 1992, 63 (03) :315-344
[7]   Compression techniques for boundary integral equations - asymptotically optimal complexity estimates [J].
Dahmen, W ;
Harbrecht, H ;
Schneider, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 43 (06) :2251-2271
[8]   Composite wavelet bases for operator equations [J].
Dahmen, W ;
Schneider, R .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1533-1567
[9]  
Dambrine M., 2002, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., V96, P95
[10]  
DELFOUR MC, 2001, ADV CONTROL, V4