Topological conjugation and asymptotic stability in impulsive semidynamical systems

被引:44
作者
Bonotto, E. M. [1 ]
Federson, M. [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, BR-13560970 Sao Carlos, SP, Brazil
关键词
impulsive semidynamical systems; topological conjugation; attractor; stability;
D O I
10.1016/j.jmaa.2006.03.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove several results concerning topological conjugation of two impulsive semidynamical systems. In particular, we prove that the homeomorphism, which defines the topological conjugation takes impulsive points to impulsive points; it also preserves limit sets, prolongational limit sets and properties as the minimality of positive impulsive orbits as well as stability and invariance with respect to the impulsive system. We also present the concepts of attraction and asymptotic stability in this setting and prove some related results. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:869 / 881
页数:13
相关论文
共 10 条
[1]  
BHATIA N.P., 1970, GRUNDLEHREN MATH WIS, V161
[2]  
Ciesielski K., 2004, Bulletin of the Polish Academy of Sciences, Technical Sciences, V52, P81, DOI 10.4064/ba52-1-9
[3]  
Ciesielski K., 2004, Bulletin of the Polish Academy of Sciences, Technical Sciences, V52, P71, DOI 10.4064/ba52-1-8
[4]  
CIESIELSKI K., 1992, B POLISH ACAD SCI MA, V40, P297
[5]  
Ciesielski K., 2004, ANN POL MATH, V84, P1, DOI DOI 10.4064/AP84-1-1
[6]   ON IMPULSIVE SEMIDYNAMICAL SYSTEMS [J].
KAUL, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1990, 150 (01) :120-128
[7]  
Kaul S. K., 1994, J. Appl. Math. Stoch. Anal., V7, P509
[8]  
Kaul S. K., 1992, Recent Trends in Differential Equations, P335
[9]   ON IMPULSIVE SEMIDYNAMICAL SYSTEMS .2. RECURSIVE PROPERTIES [J].
KAUL, SK .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (7-8) :635-645
[10]  
Saperstone S. H, 1981, APPL MATH SCI