Infiltrated Sr2Fe1.5Mo0.5O6/La0.9Sr0.1Ga0.8Mg0.2O3 electrodes towards high performance symmetrical solid oxide fuel cells fabricated by an ultra-fast and time-saving procedure

被引:25
作者
Liu, Juan [1 ,2 ]
Lei, Yu [4 ]
Li, Yumei [3 ]
Gao, Jun [1 ,2 ]
Han, Da [4 ]
Zhan, Weiting [1 ]
Huang, Fuqiang [1 ]
Wang, Shaorong [1 ,5 ]
机构
[1] Chinese Acad Sci SICCAS, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, 1295 Dingxi Rd, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Wuhan Univ Technol, Res & Test Ctr Mat, Wuhan 430070, Peoples R China
[4] Tsinghua Univ, Engn Lab Next Generat Power & Energy Storage Batt, Grad Sch Shenzhen, Shenzhen 518055, Peoples R China
[5] China Univ Min & Technol, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Sr2Fe1.5Mo0.5O6; LSGM skeleton; Ultra-fast; Symmetrical electrode; LAYERED PEROVSKITE; CATHODE MATERIAL; TEMPERATURE; ANODE;
D O I
10.1016/j.elecom.2017.02.019
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Herein, the Sr2Fe1.5Mo0.5O6 (SFM) precursor solution is infiltrated into a tri-layered "porous La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM)/dense LSGM/porous LSGM" skeleton to form both SFM/LSGM symmetrical fuel cells and functional fuel cells by adopting an ultra-fast and time-saving procedure. The heating/cooling rate when fabricating is fixed at 200 degrees C/min. Thanks to the unique cell structure with high thermal shock resistance and matched thermal expansion coefficients (TEC) between SFM and LSGM, no SFM/LSGM interfacial detachment is detected. The polarization resistances (Rp) of SFM/LSGM composite cathode and anode at 650 degrees C are 0.27 Omega.cm(2) and 0.235 Omega.cm(2), respectively. These values are even smaller than those of the cells fabricated with traditional method. From scanning electron microscope (SEM), a more homogenous distribution of SFM is identified in the ultra-fast fabricated SFM/LSGM composite, therefore leading to the enhanced performance. This study also strengthens the evidence that SFM can be used as high performance symmetrical electrode material both running in H-2 and CH4. When using H-2 as fuel, the maximum power density of "SFM-LSGM/LSGM/ LSGM-SFM" functional fuel cell at 700 degrees C is 880 mW cm(-2). By using CH4 as fuel, the maximum power densities at 850 and 900 degrees C are 146 and 306 mW cm(-2), respectively. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 32 条
[1]   A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes [J].
Bastidas, DM ;
Tao, SW ;
Irvine, JTS .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (17) :1603-1605
[2]   Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated solid oxide fuel cell cathode performance [J].
Burye, Theodore E. ;
Nicholas, Jason D. .
JOURNAL OF POWER SOURCES, 2016, 301 :287-298
[3]   A robust symmetrical electrode with layered perovskite structure for direct hydrocarbon solid oxide fuel cells: PrBa0.8Ca0.2Mn2O5+δ [J].
Choi, S. ;
Sengodan, S. ;
Park, S. ;
Ju, Y-W. ;
Kim, J. ;
Hyodo, J. ;
Jeong, H. Y. ;
Ishihara, T. ;
Shin, J. ;
Kim, G. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (05) :1747-1753
[4]  
Da Han, SCI REP, V2, P462
[5]   A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6-δ double perovskite as anode material [J].
Ding, Hanping ;
Tao, Zetian ;
Liu, Shun ;
Yang, Yating .
JOURNAL OF POWER SOURCES, 2016, 327 :573-579
[6]   High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs [J].
Fernandez-Ropero, A. J. ;
Porras-Vazquez, J. M. ;
Cabeza, A. ;
Slater, P. R. ;
Marrero-Lopez, D. ;
Losilla, E. R. .
JOURNAL OF POWER SOURCES, 2014, 249 :405-413
[7]   Co-infiltrating Pr0.6Sr0.4FeO3-Ce1-xPrxO2 (x=0.1, 0.3, 0.5, 0.7, 0.9) mixed oxides into the La0.9Sr0.1Ga0.8Mg0.2O3 skeleton for use as low temperature solid oxide fuel cell cathodes [J].
Han, Da ;
Liu, Yadi ;
Wang, Shaorong ;
Zhan, Zhongliang .
ELECTROCHIMICA ACTA, 2014, 143 :168-174
[8]   Enhanced performance of solid oxide fuel cell fabricated by a replica technique combined with infiltrating process [J].
Han, Da ;
Liu, Yadi ;
Wang, Shaorong ;
Zhan, Zhongliang .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (25) :13217-13223
[9]   Nanostructuring of SmBa0.5Sr0.5Co2O5+δ cathodes for reduced-temperature solid oxide fuel cells [J].
Han, Da ;
Wu, Hao ;
Li, Junliang ;
Wang, Shaorong ;
Zhan, Zhongliang .
JOURNAL OF POWER SOURCES, 2014, 246 :409-416
[10]   Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges [J].
Jiang, San Ping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (01) :449-470