Extension of theorems of Fedorov and Rado to solutions of the heat-conduction equation

被引:0
作者
Ischanov, BZ [1 ]
机构
[1] Moscow State Univ, Moscow, Russia
来源
VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA | 2000年 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:45 / 48
页数:4
相关论文
共 50 条
[21]   ASYMPTOTIC STABILITY OF INVARIANT SOLUTIONS OF NONLINEAR HEAT-CONDUCTION EQUATION WITH SOURCES [J].
GALAKTIONOV, VA ;
KURDYUMOV, SP ;
SAMARSKII, AA .
DIFFERENTIAL EQUATIONS, 1984, 20 (04) :461-476
[22]   EXISTENCE OF GENERAL HEAT-CONDUCTION EQUATION [J].
KREMER, M .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1975, 55 (04) :211-212
[23]   FUNDAMENTAL-SOLUTIONS OF THE NON-LINEAR EQUATION OF HEAT-CONDUCTION [J].
BELOLIPETSKII, AA ;
TERKRIKOROV, AM .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1984, 24 (03) :141-149
[24]   LINEARIZATION FOR A NONLINEAR HEAT-CONDUCTION EQUATION [J].
Martynenko, I. M. .
JOURNAL OF ENGINEERING PHYSICS AND THERMOPHYSICS, 2006, 79 (03) :444-447
[25]   JACOBI GROUPS AND THE HEAT-CONDUCTION EQUATION [J].
BERNDT, R .
MATHEMATISCHE ZEITSCHRIFT, 1986, 191 (03) :351-361
[26]   SOLUTIONS TO THE HEAT-CONDUCTION EQUATION WITH TIME-DEPENDENT BOUNDARY CONDITIONS [J].
BERGLES, AE ;
KAYE, J .
JOURNAL OF THE AEROSPACE SCIENCES, 1961, 28 (03) :251-252
[27]   ASYMPTOTIC PROPERTIES OF SOLUTIONS OF EXTERIOR MIXED PROBLEMS FOR THE HEAT-CONDUCTION EQUATION [J].
PROKA, DV .
DIFFERENTIAL EQUATIONS, 1985, 21 (02) :181-187
[28]   MEAN PROPERTY FOR THE HEAT-CONDUCTION EQUATION [J].
KUPTSOV, LP .
MATHEMATICAL NOTES, 1981, 29 (1-2) :110-116
[29]   A HEAT-CONDUCTION EQUATION WITH 3 RELAXATION-TIMES - PARTICULAR SOLUTIONS [J].
GHALEB, AF ;
MOHAMEDEIN, MSE .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1989, 27 (11) :1367-1377
[30]   SOME SOLUTIONS OF THE NONSTATIONARY HEAT-CONDUCTION EQUATION IN A REGIME WITH SLIPPAGE. [J].
Sheifot, A.I. ;
Redchits, V.P. ;
Gaidukov, M.N. .
1600, (51)