Enabling 6C Fast Charging of Li-Ion Batteries with Graphite/Hard Carbon Hybrid Anodes

被引:196
作者
Chen, Kuan-Hung [1 ]
Goel, Vishwas [1 ]
Namkoong, Min Ji [2 ]
Wied, Markus [3 ]
Muller, Simon [3 ]
Wood, Vanessa [3 ]
Sakamoto, Jeff [1 ,2 ]
Thornton, Katsuyo [1 ]
Dasgupta, Neil P. [1 ,2 ]
机构
[1] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] ETH, Dept Informat Technol & Elect Engn, CH-8092 Zurich, Switzerland
关键词
batteries; fast charging; graphite; lithium plating; modeling; NEGATIVE ELECTRODE MATERIALS; HARD CARBON; TRANSFERENCE NUMBER; LITHIUM; CELLS; INSERTION; DESIGN; INHOMOGENEITIES; PERFORMANCE; CAPACITIES;
D O I
10.1002/aenm.202003336
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li-ion batteries that can simultaneously achieve high-energy density and fast charging are essential for electric vehicles. Graphite anodes enable a high-energy density, but suffer from an inhomogeneous reaction current and irreversible Li plating during fast charging. In contrast, hard carbon exhibits superior rate performance but lower energy density owing to its lower initial coulombic efficiency and higher average voltage. In this work, these tradeoffs are overcome by fabricating hybrid anodes with uniform mixtures of graphite and hard carbon, using industrially-relevant multi-layer pouch cells (>1 Ah) and electrode loadings (3 mAh cm(-2)). By controlling the graphite/hard carbon ratio, this study shows that battery performance can be systematically tuned to achieve both high-energy density and efficient fast charging. Pouch cells with optimized hybrid anodes retain 87% and 82% of their initial specific energy after 500 cycles of 4C and 6C fast-charge cycling, respectively. This is significantly higher than the 61% and 48% specific energy retention with graphite anodes under the same conditions. The enhanced performance is attributed to improved homogeneity of the reaction current throughout the hybrid anode, which is supported by continuum-scale modeling. This process is directly compatible with existing roll-to-roll battery manufacturing, representing a scalable pathway to fast charging.
引用
收藏
页数:12
相关论文
共 60 条
[1]   Enabling fast charging - A battery technology gap assessment [J].
Ahmed, Shabbir ;
Bloom, Ira ;
Jansen, Andrew N. ;
Tanim, Tanvir ;
Dufek, Eric J. ;
Pesaran, Ahmad ;
Burnham, Andrew ;
Carlson, Richard B. ;
Dias, Fernando ;
Hardy, Keith ;
Keyser, Matthew ;
Kreuzer, Cory ;
Markel, Anthony ;
Meintz, Andrew ;
Michelbacher, Christopher ;
Mohanpurkar, Manish ;
Nelson, Paul A. ;
Robertson, David. C. ;
Scoffield, Don ;
Shirk, Matthew ;
Stephens, Thomas ;
Vijayagopal, Ram ;
Zhang, Jiucai .
JOURNAL OF POWER SOURCES, 2017, 367 :250-262
[2]   The Development and Future of Lithium Ion Batteries [J].
Blomgren, George E. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (01) :A5019-A5025
[3]   Li-insertion in hard carbon anode materials for Li-ion batteries. [J].
Buiel, E ;
Dahn, JR .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :121-130
[4]   Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures [J].
Chen, Kuan-Hung ;
Namkoong, Min Ji ;
Goel, Vishwas ;
Yang, Chenglin ;
Kazemiabnavi, Saeed ;
Mortuza, S. M. ;
Kazyak, Eric ;
Mazumder, Jyoti ;
Thornton, Katsuyo ;
Sakamoto, Jeff ;
Dasgupta, Neil P. .
JOURNAL OF POWER SOURCES, 2020, 471
[5]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[6]  
Christophersen J. P., 2015, BATTERY TEST MANUAL
[7]   Electrode scale and electrolyte transport effects on extreme fast charging of lithium-ion cells [J].
Colclasure, Andrew M. ;
Tanim, Tanvir R. ;
Jansen, Andrew N. ;
Trask, Stephen E. ;
Dunlop, Alison R. ;
Polzin, Bryant J. ;
Bloom, Ira ;
Robertson, Dave ;
Flores, LeRoy ;
Evans, Michael ;
Dufek, Eric J. ;
Smith, Kandler .
ELECTROCHIMICA ACTA, 2020, 337
[8]   Requirements for Enabling Extreme Fast Charging of High Energy Density Li-Ion Cells while Avoiding Lithium Plating [J].
Colclasure, Andrew M. ;
Dunlop, Alison R. ;
Trask, Stephen E. ;
Polzin, Bryant J. ;
Jansen, Andrew N. ;
Smith, Kandler .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) :A1412-A1424
[9]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[10]   Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries [J].
Diederichsen, Kyle M. ;
McShane, Eric J. ;
McCloskey, Bryan D. .
ACS ENERGY LETTERS, 2017, 2 (11) :2563-2575