Clocks in Feynman's computer and Kitaev's local Hamiltonian: Bias, gaps, idling, and pulse tuning

被引:18
作者
Caha, Libor [1 ]
Landau, Zeph [2 ]
Nagaj, Daniel [1 ]
机构
[1] Slovak Acad Sci, Inst Phys, Res Ctr Quantum Informat, Dubravska Cesta 9, Bratislava 84511, Slovakia
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
基金
欧盟第七框架计划;
关键词
RENORMALIZATION-GROUP; GROUND-STATE; QUANTUM; COMPLEXITY; SYSTEMS;
D O I
10.1103/PhysRevA.97.062306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a collection of results about the clock in Feynman's computer construction and Kitaev's local Hamiltonian problem. First, by analyzing the spectra of quantum walks on a line with varying end-point terms, we find a better lower bound on the gap of the Feynman Hamiltonian, which translates into a less strict promise gap requirement for the quantum-Merlin-Arthur-complete local Hamiltonian problem. We also translate this result into the language of adiabatic quantum computation. Second, introducing an idling clock construction with a large state space but fast Cesaro mixing, we provide a way for achieving an arbitrarily high success probability of computation with Feynman's computer with only a logarithmic increase in the number of clock qubits. Finally, we tune and thus improve the costs (locality and gap scaling) of implementing a (pulse) clock with a single excitation.
引用
收藏
页数:20
相关论文
共 42 条
[1]   Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation [J].
Aharonov, Dorit ;
van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM REVIEW, 2008, 50 (04) :755-787
[2]   Adiabatic quantum state generation [J].
Aharonov, Dorit ;
Ta-Shma, Amnon .
SIAM JOURNAL ON COMPUTING, 2007, 37 (01) :47-82
[3]  
[Anonymous], 1991, The annals of applied probability, DOI DOI 10.1214/AOAP/1177005980
[4]  
[Anonymous], 2011, P 43 ANN ACM S THEOR, DOI 10.1145/1993636.1993682
[5]  
Bausch J., ARXIV160908571
[6]  
Bookatz AD, 2014, QUANTUM INF COMPUT, V14, P361
[7]  
Bravyi S., ARXIVQUANTPH0602108
[8]   COMPLEXITY OF STOQUASTIC FRUSTRATION-FREE HAMILTONIANS [J].
Bravyi, Sergey ;
Terhal, Barbara .
SIAM JOURNAL ON COMPUTING, 2009, 39 (04) :1462-1485
[9]  
Childs A.M., 2003, P 35 ANN ACM S THEOR, P59, DOI [10.1145/780542.780552, DOI 10.1145/780542.780552]
[10]  
Cormen T. H., 2009, Introduction to Algorithms, V3rd