Spatiotemporal velocity-velocity correlation function in fully developed turbulence

被引:25
作者
Canet, Leonie [1 ,2 ]
Rossetto, Vincent [1 ,2 ]
Wschebor, Nicolas [3 ]
Balarac, Guillaume [1 ,4 ]
机构
[1] Univ Grenoble Alpes, LPMMC, UMR 5493, F-38042 Grenoble, France
[2] CNRS, LPMMC, UMR 5493, F-38042 Grenoble, France
[3] Univ Republica, Fac Ingn, Inst Fis, JH & Reissig 565, Montevideo 11000, Uruguay
[4] CNRS, LEGI, UMR 5519, F-38042 Grenoble, France
关键词
RANDOMLY STIRRED FLUID; ISOTROPIC TURBULENCE; RENORMALIZATION-GROUP; TIME CORRELATIONS; DYNAMICS; ENERGY; SPECTRA; NUMBERS; FLOW;
D O I
10.1103/PhysRevE.95.023107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Turbulence is a ubiquitous phenomenon in natural and industrial flows. Since the celebrated work of Kolmogorov in 1941, understanding the statistical properties of fully developed turbulence has remained a major quest. In particular, deriving the properties of turbulent flows from a mesoscopic description, that is, from the Navier-Stokes equation, has eluded most theoretical attempts. Here, we provide a theoretical prediction for the functional space and time dependence of the velocity-velocity correlation function of homogeneous and isotropic turbulence from the field theory associated to the Navier-Stokes equation with stochastic forcing. This prediction, which goes beyond Kolmogorov theory, is the analytical fixed point solution of nonperturbative renormalization group flow equations, which are exact in the limit of large wave numbers. This solution is compared to two-point two-times correlation functions computed in direct numerical simulations. We obtain a remarkable agreement both in the inertial and in the dissipative ranges.
引用
收藏
页数:8
相关论文
共 38 条
[1]  
Adzhemyan L.T., 1999, Field Theoretic Renormalization Group in Fully Developed Turbulence
[2]   Random forcing of three-dimensional homogeneous turbulence [J].
Alvelius, K .
PHYSICS OF FLUIDS, 1999, 11 (07) :1880-1889
[3]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[4]   Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed-point solution [J].
Canet, Leonie ;
Delamotte, Bertrand ;
Wschebor, Nicolas .
PHYSICAL REVIEW E, 2016, 93 (06)
[5]   Fully developed isotropic turbulence: Symmetries and exact identities [J].
Canet, Leonie ;
Delamotte, Bertrand ;
Wschebor, Nicolas .
PHYSICAL REVIEW E, 2015, 91 (05)
[6]   Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: General framework and first applications [J].
Canet, Leonie ;
Chate, Hugues ;
Delamotte, Bertrand ;
Wschebor, Nicolas .
PHYSICAL REVIEW E, 2011, 84 (06)
[7]   Nonperturbative Renormalization Group for the Kardar-Parisi-Zhang Equation [J].
Canet, Leonie ;
Chate, Hugues ;
Delamotte, Bertrand ;
Wschebor, Nicolas .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)
[8]   SWEEPING DECORRELATION IN ISOTROPIC TURBULENCE [J].
CHEN, SY ;
KRAICHNAN, RH .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (12) :2019-2024
[9]   Intermittency of velocity time increments in turbulence -: art. no. 064501 [J].
Chevillard, L ;
Roux, SG ;
Lévêque, E ;
Mordant, N ;
Pinton, JF ;
Arnéodo, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[10]  
de Dominicis C., 1976, J. Phys. Colloq, V37, pC1, DOI [10.1051/jphyscol:1976138, DOI 10.1051/JPHYSCOL:1976138]