Ultrasound-based internal carotid artery plaque characterization using deep learning paradigm on a supercomputer: a cardiovascular disease/stroke risk assessment system

被引:50
作者
Saba, Luca [1 ]
Sanagala, Skandha S. [2 ,3 ]
Gupta, Suneet K. [3 ]
Koppula, Vijaya K. [2 ]
Johri, Amer M. [4 ]
Sharma, Aditya M. [5 ]
Kolluri, Raghu [6 ]
Bhatt, Deepak L. [7 ]
Nicolaides, Andrew [8 ]
Suri, Jasjit S. [9 ]
机构
[1] Azienda Osped Univ AOU, Dept Radiol, Cagliari, Italy
[2] CMR Coll Engn & Technol, CSE Dept, Hyderabad, India
[3] Bennett Univ, CSE Dept, Greater Noida, UP, India
[4] Queens Univ, Dept Med, Div Cardiol, Kingston, ON, Canada
[5] Univ Virginia, Div Cardiovasc Med, Charlottesville, VA USA
[6] OhioHlth Heart & Vasc, Columbus, OH USA
[7] Harvard Med Sch, Brigham & Womens Hosp, Heart & Vasc Ctr, Boston, MA 02115 USA
[8] Univ Nicosia, Vasc Screening & Diagnost Ctr, Nicosia, Cyprus
[9] AtheroPoint, Stroke Diag & Monitoring Div, Roseville, CA 95661 USA
关键词
Atherosclerosis; Carotid plaque; Ultrasound; Symptomatic; Asymptomatic; Artificial intelligence; Machine learning; Deep learning; Performance; Supercomputer; Accuracy; And speed; THYROID LESION CLASSIFICATION; TISSUE CHARACTERIZATION; ATHEROSCLEROTIC PLAQUE; AUTOMATED CLASSIFICATION; LIVER-DISEASE; STRATIFICATION; FEATURES; TEXTURE; STENOSIS; COMBINATION;
D O I
10.1007/s10554-020-02124-9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Visual or manual characterization and classification of atherosclerotic plaque lesions are tedious, error-prone, and time-consuming. The purpose of this study is to develop and design an automated carotid plaque characterization and classification system into binary classes, namely symptomatic and asymptomatic types via the deep learning (DL) framework implemented on a supercomputer. We hypothesize that on ultrasound images, symptomatic carotid plaques have (a) a low grayscale median because of a histologically large lipid core and relatively little collagen and calcium, and (b) a higher chaotic (heterogeneous) grayscale distribution due to the composition. The methodology consisted of building a DL model of Artificial Intelligence (called Atheromatic 2.0, AtheroPoint, CA, USA) that used a classic convolution neural network consisting of 13 layers and implemented on a supercomputer. The DL model used a cross-validation protocol for estimating the classification accuracy (ACC) and area-under-the-curve (AUC). A sample of 346 carotid ultrasound-based delineated plaques were used (196 symptomatic and 150 asymptomatic, mean age 69.9 +/- 7.8 years, with 39% females). This was augmented using geometric transformation yielding 2312 plaques (1191 symptomatic and 1120 asymptomatic plaques). K10 (90% training and 10% testing) cross-validation DL protocol was implemented and showed an (i) accuracy and (ii) AUC without and with augmentation of 86.17%, 0.86 (p-value < 0.0001), and 89.7%, 0.91 (p-value < 0.0001), respectively. The DL characterization system consisted of validation of the two hypotheses: (a) mean feature strength (MFS) and (b) Mandelbrot's fractal dimension (FD) for measuring chaotic behavior. We demonstrated that both MFS and FD were higher in symptomatic plaques compared to asymptomatic plaques by 64.15 +/- 0.73% (p-value < 0.0001) and 6 +/- 0.13% (p-value < 0.0001), respectively. The benchmarking results show that DL with augmentation (ACC: 89.7%, AUC: 0.91 (p-value < 0.0001)) is superior to previously published machine learning (ACC: 83.7%) by 6.0%. The Atheromatic runs the test patient in < 2 s. Deep learning can be a useful tool for carotid ultrasound-based characterization and classification of symptomatic and asymptomatic plaques.
引用
收藏
页码:1511 / 1528
页数:18
相关论文
共 74 条
[1]   Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images [J].
Acharya, J. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Krishnananda, N. ;
Ranjan, Shetty ;
Umesh, Pai ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) :624-632
[2]  
Acharya R, 2008, ARTECH HSE BIOINF BI, P1
[3]   Diagnosis of Hashimoto's thyroiditis in ultrasound using tissue characterization and pixel classification [J].
Acharya, U. R. ;
Sree, S. Vinitha ;
Mookiah, M. R. K. ;
Yantri, R. ;
Molinari, F. ;
Zieleznik, W. ;
Malyszek-Tumidajewicz, J. ;
Stepien, B. ;
Bardales, R. H. ;
Witkowska, A. ;
Suri, J. S. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2013, 227 (07) :788-798
[4]   Computed tomography carotid wall plaque characterization using a combination of discrete wavelet transform and texture features: A pilot study [J].
Acharya, U. R. ;
Sree, S. Vinitha ;
Mookiah, M. R. K. ;
Saba, L. ;
Gao, H. ;
Mallarini, G. ;
Suri, J. S. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2013, 227 (H6) :643-654
[5]   Cost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ Algorithms [J].
Acharya, U. R. ;
Faust, O. ;
Sree, S. V. ;
Molinari, F. ;
Garberoglio, R. ;
Suri, J. S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2011, 10 (04) :371-380
[6]  
Acharya U.R, 2012, 2012 ANN INT C IEEE
[7]   Ovarian Tissue Characterization in Ultrasound: A Review [J].
Acharya, U. Rajendra ;
Molinari, Filippo ;
Sree, S. Vinitha ;
Swapna, G. ;
Saba, Luca ;
Guerriero, Stefano ;
Suri, Jasjit S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2015, 14 (03) :251-261
[8]   A Review on Ultrasound-based Thyroid Cancer Tissue Characterization and Automated Classification [J].
Acharya, U. Rajendra ;
Swapna, G. ;
Sree, S. Vinitha ;
Molinari, Filippo ;
Gupta, Savita ;
Bardales, Ricardo H. ;
Witkowska, Agnieszka ;
Suri, Jasjit S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2014, 13 (04) :289-301
[9]   Ovarian Tumor Characterization and Classification Using Ultrasound-A New Online Paradigm [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Saba, Luca ;
Molinari, Filippo ;
Guerriero, Stefano ;
Suri, Jasjit S. .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (03) :544-553
[10]   Atherosclerotic plaque tissue characterization in 2D ultrasound longitudinal carotid scans for automated classification: a paradigm for stroke risk assessment [J].
Acharya, U. Rajendra ;
Mookiah, Muthu Rama Krishnan ;
Sree, S. Vinitha ;
Afonso, David ;
Sanches, Joao ;
Shafique, Shoaib ;
Nicolaides, Andrew ;
Pedro, L. M. ;
Fernandes e Fernandes, J. ;
Suri, Jasjit S. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2013, 51 (05) :513-523