Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients

被引:21
作者
Metafune, G. [1 ]
Negro, L. [1 ]
Spina, C. [1 ]
机构
[1] Univ Salento, Dipartimento Matemat Ennio De Giorgi, CP 193, I-73100 Lecce, Italy
关键词
Elliptic operators; Discontinuous coefficients; Analytic semigroups; Kernel estimates; HEAT-EQUATION; SCHRODINGER;
D O I
10.1007/s00028-017-0408-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the second- order elliptic operator L = + ( a - 1) N i, j= 1 xi x j | x| 2 Di j + c x | x| 2 center dot. - b | x| 2, a > 0, b, c. R, and we prove sharp bounds for the heat kernel and the function.
引用
收藏
页码:467 / 514
页数:48
相关论文
共 23 条
[1]  
Abramowitz M., 2013, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, V(eds)
[2]  
[Anonymous], 1954, TABLE INTEGRAL TRANS
[3]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[4]   Two-sided estimates on Dirichlet heat kernels for time-dependent parabolic operators with singular drifts in C1,α-domains [J].
Cho, Sungwon ;
Kim, Panki ;
Park, Hyein .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (02) :1101-1145
[5]  
Davies E.B., 1995, Cambridge Stud. Adv. Math.
[6]   Sharp two-sided heat kernel estimates for critical Schrodinger operators on bounded domains [J].
Filippas, Stathis ;
Moschini, Luisa ;
Tertikas, Achilles .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (01) :237-281
[7]   Heat kernels of two-dimensional magnetic Schrodinger and Pauli operators [J].
Kovarik, Hynek .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (3-4) :351-374
[8]  
MANSELLI P, 1972, MATEMATICHE, V27, P251
[9]  
Manselli P., 2003, MATEMATICHE, V58, P67
[10]  
MANSELLI P, 1973, ANN MAT PUR APPL, V95, P269