Green synthesis of NiO nanostructured materials using Hydrangea paniculata flower extracts and their efficient application as supercapacitor electrodes

被引:70
作者
Kundu, Manab [1 ,2 ]
Karunakaran, Gopalu [2 ,3 ]
Kuznetsov, Denis [2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Mat Sci & Engn, NO-7491 Trondheim, Norway
[2] Natl Univ Sci & Technol MISiS, Dept Funct Nanosyst & High Temp Mat, Leninskiy Pr 4, Moscow 119049, Russia
[3] KS Rangasamy Coll Arts & Sci Autonomous, Dept Biotechnol, Tiruchengode 637215, Tamil Nadu, India
关键词
Green synthesis; Hydrangea paniculata; NiO-NPs; Structural characterizations; Electrochemical properties; Supercapacitor; PERFORMANCE ELECTROCHEMICAL CAPACITORS; ASYMMETRIC SUPERCAPACITORS; NICKEL FOAM; NANOPARTICLES; MICROSPHERES; NANOFLAKES;
D O I
10.1016/j.powtec.2017.01.085
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this report, for the first time, we have applied green synthesis Ni0 nanoparticles (NiO-NPs) as an electrode material for supercapacitor (SC). Hydrangea paniculata flower extracts were used for the green synthesis of NiO-NPs. The green synthesized NiO-NPs is found to be 33 nm with surface area of 78.472 m(2) g(-1) along with pore volume and pore size of 0.149 cm(3) g(-1) and 4.061 nm. The green synthesized NiO-NPs based electrode exhibit high specific capacitance of 752, 709, 644, 603 and 581 F g(-1) at current densities of 2.5, 5, 10, 20, and 40 Ag-1, respectively, are revealing excellent capacitance retention even at a high current density. More notably, the NiO-NPs electrodes also show outstanding cycling stability up to 5000 cycles at 10 A g(-1) without discernable capacitance fading. This superior electrochemical performance of NiO-NPs is mainly attributed to the nano-dimention of the particles, which shorten the diffusion path lengths for both ions and electrons, ease migration during the rapid charge-discharge process and consequently improve the effective electrochemical utilization of electroactive material. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 136
页数:5
相关论文
共 23 条
[1]   Fabrication and performance evaluation of hybrid supercapacitor electrodes based on carbon nanotubes and sputtered TiO2 [J].
Aravinda, L. S. ;
Nagaraja, K. K. ;
Nagaraja, H. S. ;
Bhat, K. Udaya ;
Bhat, B. Ramachandra .
NANOTECHNOLOGY, 2016, 27 (31)
[2]   ZnO/carbon nanotube nanocomposite for high energy density supercapacitors [J].
Aravinda, L. S. ;
Nagaraja, K. K. ;
Nagaraja, H. S. ;
Bhat, K. Udaya ;
Bhat, Badekai Ramachandra .
ELECTROCHIMICA ACTA, 2013, 95 :119-124
[3]   Carbon-nanoparticles encapsulated in hollow nickel oxides for supercapacitor application [J].
Fan, Lei ;
Tang, Le ;
Gong, Huifang ;
Yao, Zhiheng ;
Guo, Rong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (32) :16376-16381
[4]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918
[5]   Use of Polyelectrolytes for the Fabrication of Porous NiO Films by Electrophoretic Deposition for Supercapacitor Electrodes [J].
Gonzalez, Z. ;
Ferrari, B. ;
Sanchez-Herencia, A. J. ;
Caballero, A. ;
Morales, J. .
ELECTROCHIMICA ACTA, 2016, 211 :110-118
[6]   Hydrangea paniculata flower extract-mediated green synthesis of MgNPs and AgNPs for health care applications [J].
Karunakaran, Gopalu ;
Jagathambal, Matheswaran ;
Venkatesh, Manickam ;
Kumar, Govindan Suresh ;
Kolesnikov, Evgeny ;
Dmitry, Arkhipov ;
Gusev, Alexander ;
Kuznetsov, Denis .
POWDER TECHNOLOGY, 2017, 305 :488-494
[7]  
Kundu M, 2015, J. Nanosci. Lett., V5, P11
[8]   Binder-free electrodes consisting of porous NiO nanofibers directly electrospun on nickel foam for high-rate supercapacitors [J].
Kundu, Manab ;
Liu, Lifeng .
MATERIALS LETTERS, 2015, 144 :114-118
[9]   Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors [J].
Kundu, Manab ;
Liu, Lifeng .
JOURNAL OF POWER SOURCES, 2013, 243 :676-681
[10]   Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors [J].
Lang, Jun-Wei ;
Kong, Ling-Bin ;
Wu, Wei-Jin ;
Luo, Yong-Chun ;
Kang, Long .
CHEMICAL COMMUNICATIONS, 2008, (35) :4213-4215