Deep Learning for Human Activity Recognition in Mobile Computing

被引:59
作者
Plotz, Thomas [1 ]
Guan, Yu [2 ]
机构
[1] Georgia Tech, Sch Interact Comp, Coll Comp, Atlanta, GA 30332 USA
[2] Newcastle Univ, Sch Comp Sci, Newcastle Upon Tyne, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
artificial intelligence; complexity; deep learning; embedded systems; HAR; human activity recognition; intelligent systems; machine learning; mobile; mobile and embedded deep learning; modeling; pattern recognition;
D O I
10.1109/MC.2018.2381112
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
By leveraging advances in deep learning, challenging pattern recognition problems have been solved in computer vision, speech recognition, natural language processing, and more. Mobile computing has also adopted these powerful modeling approaches, delivering astonishing success in the field's core application domains, including the ongoing transformation of human activity recognition technology through machine learning.
引用
收藏
页码:50 / 59
页数:10
相关论文
共 15 条
  • [1] A Tutorial on Human Activity Recognition Using Body-Worn Inertial Sensors
    Bulling, Andreas
    Blanke, Ulf
    Schiele, Bernt
    [J]. ACM COMPUTING SURVEYS, 2014, 46 (03)
  • [2] Doherty A., 2017, PLOS ONE, V12
  • [3] Preprocessing techniques for context recognition from accelerometer data
    Figo, Davide
    Diniz, Pedro C.
    Ferreira, Diogo R.
    Cardoso, Joao M. P.
    [J]. PERSONAL AND UBIQUITOUS COMPUTING, 2010, 14 (07) : 645 - 662
  • [4] Hammerla N. Y., 2016, P INT JOINT C ART IN, pxx
  • [5] Hammerla R., 2013, P INT S WEAR COMP SE, P65
  • [6] Beyond Activity Recognition: Skill Assessment from Accelerometer Data
    Khan, Aftab
    Mellor, Sebastian
    Berlin, Eugen
    Thompson, Robin
    McNaney, Roisin
    Olivier, Patrick
    Plotz, Thomas
    [J]. PROCEEDINGS OF THE 2015 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING (UBICOMP 2015), 2015, : 1155 - 1166
  • [7] Squeezing Deep Learning into Mobile and Embedded Devices
    Lane, Nicholas D.
    Bhattacharya, Sourav
    Mathur, Akhil
    Georgiev, Petko
    Forlivesi, Claudio
    Kawsar, Fahim
    [J]. IEEE PERVASIVE COMPUTING, 2017, 16 (03) : 82 - 88
  • [8] LeCun Y., 2006, A tutorial on energy-based learning, V1
  • [9] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [10] Miu T., 2015, P IUCC