Experimental study on surface modification of PET films under bipolar nanosecond-pulse dielectric barrier discharge in atmospheric air

被引:24
作者
Liu, Yunfei [1 ]
Su, Chunqiang [2 ]
Ren, Xiang [1 ]
Fan, Chuan [1 ]
Zhou, Wenwu [1 ]
Wang, Feng [3 ]
Ding, Weidong [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
[2] Xian High Voltage Apparat Res Inst, Xian 710077, Peoples R China
[3] Hunan Univ, Sch Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
关键词
Dielectric barrier discharge; PET film; Surface modification; Dielectric properties; GLOW-DISCHARGE; POLYMER-FILMS; PRESSURE; PLASMA; FILAMENTARY; EXCITATION; NITROGEN; ARGON;
D O I
10.1016/j.apsusc.2014.05.129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dielectric barrier discharge (DBD) is widely used for surface modification of polymer films. In this paper, DBD characteristics under bipolar repetitive frequency nanosecond pulse in atmospheric air are studied and surface properties of polyethylene terephthalate films under homogeneous DBD and filamentary DBD modification are compared through scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and dielectric test equipment. It is found that the discharge is homogeneous when gap spacing d is less than 1.2 mm and filamentary when d is within the range of 3.0 mm to 5.8 mm. SEM pictures reveal that films under homogeneous DBD present a smooth surface while intensive "gully-like" etches appear on the surface of the films under filamentary DBD, which can result in local insulation defects and is disadvantageous to surface modification. It is found from the XPS analysis that a number of oxygen-containing polar groups are introduced onto the surface of the film modified by homogeneous DBD compared with the untreated one. Experimental results for dielectric properties indicate that the three parameters: relative dielectric constant epsilon(r), dielectric loss tangent tan delta and breakdown voltages V-b are all changed in different degree after surface modification. And possible reason for the phenomenon is discussed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 59
页数:7
相关论文
共 28 条
[1]   Nanosecond-pulsed uniform dielectric-barrier discharge [J].
Ayan, Halim ;
Fridman, Gregory ;
Gutsol, Alexander F. ;
Vasilets, Victor N. ;
Fridman, Alexander ;
Friedman, Gary .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (02) :504-508
[2]   BREAKDOWN VOLTAGES OF COMMERCIAL POLYMER-FILMS FOLLOWING EXPOSURE TO VARIOUS GAS PLASMAS [J].
BINDER, M ;
WADE, WL ;
CYGAN, P ;
JOW, TR ;
MAMMONE, RJ .
IEEE TRANSACTIONS ON ELECTRICAL INSULATION, 1992, 27 (02) :399-401
[3]   Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form [J].
Borcia, G ;
Anderson, CA ;
Brown, NMD .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2003, 12 (03) :335-344
[4]   Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma [J].
Cui, NY ;
Brown, NMD .
APPLIED SURFACE SCIENCE, 2002, 189 (1-2) :31-38
[5]   Treatment of polymer films with a dielectric barrier discharge in air, helium and argon at medium pressure [J].
De Geyter, N. ;
Morent, R. ;
Leys, C. ;
Gengembre, L. ;
Payen, E. .
SURFACE & COATINGS TECHNOLOGY, 2007, 201 (16-17) :7066-7075
[6]   Experimental study on the transition of the discharge modes in air dielectric barrier discharge [J].
Fang, Z. ;
Lin, J. ;
Xie, X. ;
Qiu, Y. ;
Kuffel, E. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (08)
[7]   Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air [J].
Fang, Zhi ;
Hao, Lili ;
Yang, Hao ;
Xie, Xiangqian ;
Qiu, Yuchang ;
Edmund, Kuffel .
APPLIED SURFACE SCIENCE, 2009, 255 (16) :7279-7285
[8]   Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen [J].
Golubovskii, YB ;
Maiorov, VA ;
Behnke, J ;
Behnke, JF .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (08) :751-761
[9]   STABLE GLOW PLASMA AT ATMOSPHERIC-PRESSURE [J].
KANAZAWA, S ;
KOGOMA, M ;
MORIWAKI, T ;
OKAZAKI, S .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1988, 21 (05) :838-840
[10]   Dielectric-barrier discharges: Their history, discharge physics, and industrial applications [J].
Kogelschatz, U .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2003, 23 (01) :1-46