Development of Proton Exchange Membranes Based on Chitosan Blended with Poly (2-Acrylamido-2-Methylpropane Sulfonic Acid) for Fuel Cells applications

被引:28
作者
Abu-Saied, M. A. [1 ]
Soliman, E. A. [1 ]
Al Desouki, E. A. [2 ]
机构
[1] City Sci Res & Technol Applicat SRTA City, Polymer Mat Res Dept, Adv Technol & New Mat Res Inst, Alexandria 21934, Egypt
[2] Alexandria Univ, Fac Sci, Chem Dept, Alexandria, Egypt
关键词
Chitosan; Poly (2-acrylamido-2-methyl-1-propanesulfonic acid; Proton exchange membrane and Fuel cells; NANOCOMPOSITE MEMBRANES; METHANOL PERMEABILITY; COMPOSITE MEMBRANES; CONDUCTIVITY; PERVAPORATION; NAFION;
D O I
10.1016/j.mtcomm.2020.101536
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study case, the good film-forming and structural properties of chitosan (CTS) impelled us to employ them for developing polyelectrolyte membrane (PEMs). To functionalize the resultant PEMs, poly-2-acrylamido-2-methylpropane sulfonic acid (PAMPS) was blended with chitosan in different proportions. The structural and physical properties of CTS/PAMPS membranes were investigated using Raman scattering and FT-IR spectrometers, scanning electron microscope (SEM), thermos gravimetric analyzer (TGA), universal testing machine and water contact angle meter. Furthermore, water-uptake and ion exchange capacity (IEC), methanol permeability and efficiency of such membranes were measured. Ion exchange capacity of CTS/PAMPS membranes was increased with increasing the proportion of PAMPS to reach its maximum of 1.85 meq/g comparing with 0.9 meq/Yg for Nafion (R) 117. Methanol permeability of the resultant blend-based membranes at CTS/PAMPS ratio of 2:1 was 9 x 10(-7) cm(2)/sec comparing with 3.39 x 10(-6) cm(2)/sec for Nafion (R) 117. Moreover, CTS/PAMPS blend membranes exhibited efficiency factors higher than that of Nafion (R) 117. Such results enhance the potential feasibility of CTS/PAMPS membranes for direct methanol fuel cell application.
引用
收藏
页数:8
相关论文
共 39 条
  • [1] Novel sulphonated poly (vinyl chloride)/poly (2-acrylamido-2-methylpropane sulphonic acid) blends-based polyelectrolyte membranes for direct methanol fuel cells
    Abu-Saied, M. A.
    El-Desouky, E. A.
    Soliman, E. A.
    Abd El-Naim, G.
    [J]. POLYMER TESTING, 2020, 89
  • [2] Ionic conductivity of proton exchange membranes
    Beattie, PD
    Orfino, FP
    Basura, VI
    Zychowska, K
    Ding, JF
    Chuy, C
    Schmeisser, J
    Holdcroft, S
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 503 (1-2): : 45 - 56
  • [3] High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review
    Chandan, Amrit
    Hattenberger, Mariska
    El-Kharouf, Ahmad
    Du, Shangfeng
    Dhir, Aman
    Self, Valerie
    Pollet, Bruno G.
    Ingram, Andrew
    Bujalski, Waldemar
    [J]. JOURNAL OF POWER SOURCES, 2013, 231 : 264 - 278
  • [4] Suitability of some fluoropolymers used as base films for preparation of polymer electrolyte fuel cell membranes
    Chen, Jinhua
    Asano, Masaharu
    Maekawa, Yasunari
    Yoshida, Masaru
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2006, 277 (1-2) : 249 - 257
  • [5] Cho K.Y., 2004, ELECTROCHIM ACTA, V50, P588
  • [6] Proton conducting semi-IPN based on Nafion and crosslinked poly(AMPS) for direct methanol fuel cell
    Cho, KY
    Jung, HY
    Shin, SS
    Choi, NS
    Sung, SJ
    Park, JK
    Choi, JH
    Park, KW
    Sung, YE
    [J]. ELECTROCHIMICA ACTA, 2004, 50 (2-3) : 589 - 593
  • [7] High Performance Cross-Linked Poly(2-acrylamido-2-methylpropanesulfonic acid)-Based Proton Exchange Membranes for Fuel Cells
    Diao, Hanbin
    Yan, Feng
    Qiu, Lihua
    Lu, Jianmei
    Lu, Xinhua
    Lin, Bencai
    Li, Qing
    Shang, Songmin
    Liu, Wenming
    Liu, Jianguo
    [J]. MACROMOLECULES, 2010, 43 (15) : 6398 - 6405
  • [8] Eldin MSM, 2011, INT J ELECTROCHEM SC, V6, P5417
  • [9] Novel Grafted Nafion Membranes for Proton-Exchange Membrane Fuel Cell Applications
    Eldin, M. S. Mohy
    Elzatahry, A. A.
    El-Khatib, K. M.
    Hassan, E. A.
    El-Sabbah, M. M.
    Abu-Saied, M. A.
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 119 (01) : 120 - 133
  • [10] Fahmy A., 2015, J ADV CHEM, V11, P3426