In this paper a class Of Boundary Value Methods obtained as an extension of the Numerov's method is proposed for the numerical approximation of the eigenvalues of regular Sturm-Liouville problems Subject to Dirichlet boundary conditions. It is proved that the error in the so obtained estimate of the kth eigenvalue behaves as O(k(p+1)h(p-1/2)) + O(k(p+2)h(p)), where p is the order of accuracy of the method and h is the discretization stepsize. Numerical results comparing the performances of the new matrix methods with that of the corrected Numerov's method are also reported. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
机构:
Univ Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, Italy
Aceto, Lidia
;
Ghelardoni, Paolo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, Italy
Ghelardoni, Paolo
;
Marletta, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Cardiff Univ, Sch Math, Cardiff CF24 4YH, WalesUniv Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, Italy
机构:
Univ Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, Italy
Aceto, Lidia
;
Ghelardoni, Paolo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, Italy
Ghelardoni, Paolo
;
Marletta, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Cardiff Univ, Sch Math, Cardiff CF24 4YH, WalesUniv Pisa, Dipartimento Matemat Applicata U Dini, Via F Buonarroti 1-C, I-56127 Pisa, Italy