A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode

被引:38
作者
Li, Dongdong [1 ,2 ]
Ye, Chao [2 ]
Chen, Xinzhi [1 ]
Wang, Suqing [1 ]
Wang, Haihui [1 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
Sodium-ion hybrid capacitor; Anode; Capacitive contribution; Nanowires; Full carbon energy storage devices; ELECTRODE MATERIALS; ACTIVATED CARBON; STORAGE DEVICE; SUPERCAPACITOR; BATTERY; NANOCRYSTALS; NANOTUBES; NANOCOMPOSITES; INSERTION; FACILE;
D O I
10.1016/j.jpowsour.2018.02.036
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sodium ion hybrid capacitor (SHC) has been attracting much attention. However, the SHC's power density is significantly confined to a low level due to the sluggish ion diffusion in the anode. Herein, we propose to use an electrode with a high double layer capacitance as the anode in the SHC instead of insertion anodes. To this aim, nitrogen doped hollow carbon nanowires (N-HCNWs) with a high specific surface area are prepared, and the high capacitive contribution during the sodium ion storage process is confirmed by a series of electrochemical measurements. A new SHC consisting of a N-HCNW anode and a commercial active carbon (AC) cathode is fabricated for the first time. Due to the hybrid charge storage mechanism combining ion insertion and capacitive process, the as-fabricated SHC strikes a balance between the energy density and power density, a energy density of 108 Wh kg(-1) and a power density of 9 kW kg(-1) can be achieved, which overwhelms the electrochemical performances of most reported AC-based SHCs.
引用
收藏
页码:116 / 121
页数:6
相关论文
共 51 条
[1]   Unveiling TiNb2O7 as an Insertion Anode for Lithium Ion Capacitors with High Energy and Power Density [J].
Aravindan, Vanchiappan ;
Sundaramurthy, Jayaraman ;
Jain, Akshay ;
Kumar, Palaniswamy Suresh ;
Ling, Wong Chui ;
Ramakrishna, Seeram ;
Srinivasan, Madapusi P. ;
Madhavi, Srinivasan .
CHEMSUSCHEM, 2014, 7 (07) :1858-1863
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   Nitrogen-Doped Carbon Nanoparticles by Flame Synthesis as Anode Material for Rechargeable Lithium-Ion Batteries [J].
Bhattacharjya, Dhrubajyoti ;
Park, Hyean-Yeol ;
Kim, Min-Sik ;
Choi, Hyuck-Soo ;
Inamdar, Shaukatali N. ;
Yu, Jong-Sung .
LANGMUIR, 2014, 30 (01) :318-324
[4]   A study about the use of carbon coated iron oxide-based electrodes in lithium-ion capacitors [J].
Brandt, A. ;
Balducci, A. .
ELECTROCHIMICA ACTA, 2013, 108 :219-225
[5]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[6]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[7]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[8]   3D Nanocomposite Architectures from Carbon-Nanotube-Threaded Nanocrystals for High-Performance Electrochemical Energy Storage [J].
Chen, Zheng ;
Yuan, Yin ;
Zhou, Huihui ;
Wang, Xiaolei ;
Gan, Zhihua ;
Wang, Fosong ;
Lu, Yunfeng .
ADVANCED MATERIALS, 2014, 26 (02) :339-345
[9]   High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Jia, Xilai ;
Xiao, Qiangfeng ;
Dunn, Bruce ;
Lu, Yunfeng .
ACS NANO, 2012, 6 (05) :4319-4327
[10]   Advanced energy storage device: a hybrid BatCap system consisting of battery-supercapacitor hybrid electrodes based on Li4Ti5O12-activated-carbon hybrid nanotubes [J].
Choi, Hong Soo ;
Im, Ji Hyuk ;
Kim, TaeHoon ;
Park, Jae Hyun ;
Park, Chong Rae .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (33) :16986-16993