Renormalization Group Circuits for Weakly Interacting Continuum Field Theories

被引:22
作者
Cotter, Jordan [1 ]
Mozaffar, M. Reza Mohammadi [2 ]
Mollabashi, Ali [2 ]
Naseh, Ali [3 ]
机构
[1] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
[2] Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran
[3] Inst Res Fundamental Sci IPM, Sch Particles & Accelerators, POB 19395-5531, Tehran, Iran
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2019年 / 67卷 / 10期
关键词
continuous multiscale entanglement renormalization ansatz; entanglement renormalization; renormalization group; weakly interacting theories; DEPENDENT VARIATIONAL APPROACH; RADIAL FUNCTIONS; MATRIX; TERMS;
D O I
10.1002/prop.201900038
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop techniques to systematically construct local unitaries which map scale-invariant, product state wavefunctionals to the ground states of weakly interacting, continuum quantum field theories. More broadly, we devise a "quantum circuit perturbation theory" to construct local unitaries which map between any pair of wavefunctionals which are each Gaussian with arbitrary perturbative corrections. Further, we generalize cMERA to interacting continuum field theories, which requires reworking the existing formalism which is tailored to non-interacting examples. Our methods enable the systematic perturbative calculation of cMERA circuits for weakly interacting theories, and as a demonstration we compute the 1-loop cMERA circuit for scalar phi(4) theory and analyze its properties. In this case, we show that Wilsonian renormalization of the spatial momentum modes is equivalent to a local position space cMERA circuit. This example provides new insights into the connection between position space and momentum space renormalization group methods in quantum field theory. The form of cMERA circuits derived from perturbation theory suggests useful ansatzes for numerical variational calculations.
引用
收藏
页数:56
相关论文
共 62 条
[1]  
[Anonymous], 2006, FLOW EQUATION APPROA
[2]   RENORMALIZATION OF TRIAL WAVE FUNCTIONALS USING THE EFFECTIVE POTENTIAL [J].
BARNES, T ;
GHANDOUR, GI .
PHYSICAL REVIEW D, 1980, 22 (04) :924-938
[3]   INTEGRATION OF OPERATOR DIFFERENTIAL-EQUATIONS [J].
BENDER, CM ;
DUNNE, GV .
PHYSICAL REVIEW D, 1989, 40 (10) :3504-3511
[4]   EXACT-SOLUTIONS TO OPERATOR DIFFERENTIAL-EQUATIONS [J].
BENDER, CM ;
DUNNE, GV .
PHYSICAL REVIEW D, 1989, 40 (08) :2739-2742
[5]   The Fourier transform of multiradial functions [J].
Bernicot, Frederic ;
Grafakos, Loukas ;
Zhang, Yandan .
MONATSHEFTE FUR MATHEMATIK, 2014, 175 (01) :43-64
[6]   The Bender-Dunne basis operators as Hilbert space operators [J].
Bunao, Joseph ;
Galapon, Eric A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
[7]  
CALABRESE P, 2004, J STAT MECH-THEORY E, V406
[8]   Entanglement entropy and conformal field theory [J].
Calabrese, Pasquale ;
Cardy, John .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[9]   Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories [J].
Caputa, Pawel ;
Kundu, Nilay ;
Miyaji, Masamichi ;
Takayanagi, Tadashi ;
Watanabe, Kento .
PHYSICAL REVIEW LETTERS, 2017, 119 (07)
[10]   Entanglement entropy in free quantum field theory [J].
Casini, H. ;
Huerta, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)