On nonmonic quadratic matrix polynomials with nonnegative coefficients

被引:2
|
作者
Foerster, K.-H.
Nagy, B.
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Tech Univ Budapest, Dept Anal, Inst Math, H-1521 Budapest, Hungary
来源
Operator Theory in Krein Spaces and Nonlinear Eigenvalue Problems | 2006年 / 162卷
关键词
matrix polynomials; (entrywise) nonnegative matrix coefficients; irreducible matrix polynomials; nonnegative matrix roots; eigenvalues; spectral radius;
D O I
10.1007/3-7643-7453-5_9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The matrix polynomial Q(lambda) = lambda I-S(lambda), where S(.) is a nonmonic quadratic matrix polynomial with (entrywise) nonnegative square matrix coefficients, will be studied. We describe the distribution of the eigenvalues of Q(.), depending on the sign of function r -> r - rho(S(r)) (here g(.) denotes the spectral radius). The existence of a nonnegative (spectral) matrix root of Q(.) will be related to the existence of a positive r > g(S(r)). Assuming that S(t) is irreducible for one positive t, we describe the spectrum of Q(.) on the circles with radius r for any r = rho(S(r)) > 0, and describe the possibilities for the existence of a nonnegative matrix root of Q(.), for the properties of a corresponding M-matrix and the spectral properties of Q(.), depending on the function rho(S(.)) and on its derivatives.
引用
收藏
页码:145 / 163
页数:19
相关论文
共 50 条
  • [1] On reducible nonmonic matrix polynomials with general and nonnegative coefficients
    Foerster, K. -H.
    Nagy, B.
    OPERATOR THEORY IN INNER PRODUCT SPACES, 2007, 175 : 95 - 109
  • [2] FACTORIZATION PROBLEMS FOR NONMONIC MATRIX POLYNOMIALS
    GASSO, M
    HERNANDEZ, V
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1991, 12 (03) : 565 - 576
  • [3] Spectral properties of operator polynomials with nonnegative coefficients
    Foerster, Karl-Heinz
    Nagy, Bela
    OPERATOR THEORY AND INDEFINITE INNER PRODUCT SPACES, 2006, 163 : 147 - +
  • [4] Diagonalization of quadratic matrix polynomials
    Zuniga Anaya, Juan Carlos
    SYSTEMS & CONTROL LETTERS, 2010, 59 (02) : 105 - 113
  • [5] Quadratic realizability of palindromic matrix polynomials
    De Teran, Fernando
    Dopico, Froilan M.
    Mackey, D. Steven
    Perovic, Vasilije
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 567 : 202 - 262
  • [6] PERTURBATION OF THE EIGENVALUES OF QUADRATIC MATRIX POLYNOMIALS
    LANGER, H
    NAJMAN, B
    VESELIC, K
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (02) : 474 - 489
  • [7] On eigenvalues of quadratic matrix polynomials and their perturbations
    Radjabalipour, M
    Salemi, A
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (03) : 563 - 569
  • [8] Prime decomposition of quadratic matrix polynomials
    Tian, Yunbo
    Chen, Sheng
    AIMS MATHEMATICS, 2021, 6 (09): : 9911 - 9918
  • [9] STRONGLY DAMPED QUADRATIC MATRIX POLYNOMIALS
    Taslaman, Leo
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) : 461 - 475
  • [10] Approximation by polynomials with nonnegative coefficients and the spectral theory of positive operators
    Nussbaum, RD
    Walsh, B
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (06) : 2367 - 2391