On the spectrum of stiffness matrices arising from isogeometric analysis

被引:48
作者
Garoni, Carlo [1 ]
Manni, Carla [2 ]
Pelosi, Francesca [2 ]
Serra-Capizzano, Stefano [1 ]
Speleers, Hendrik [3 ]
机构
[1] Univ Insubria, Dept Sci & High Technol, I-22100 Como, Italy
[2] Univ Roma Tor Vergata, Dept Math, I-00133 Rome, Italy
[3] Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Heverlee, Leuven, Belgium
基金
奥地利科学基金会;
关键词
CONJUGATE GRADIENTS; LINEAR-SYSTEMS; CONVERGENCE; SEQUENCES;
D O I
10.1007/s00211-013-0600-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spectral properties of stiffness matrices that arise in the context of isogeometric analysis for the numerical solution of classical second order elliptic problems. Motivated by the applicative interest in the fast solution of the related linear systems, we are looking for a spectral characterization of the involved matrices. In particular, we investigate non-singularity, conditioning (extremal behavior), spectral distribution in the Weyl sense, as well as clustering of the eigenvalues to a certain (compact) subset of . All the analysis is related to the notion of symbol in the Toeplitz setting and is carried out both for the cases of 1D and 2D problems.
引用
收藏
页码:751 / 799
页数:49
相关论文
共 36 条
  • [1] [Anonymous], 1996, Iterative Methods for Sparse Linear Systems
  • [2] V-cycle optimal convergence for certain (multilevel) structured linear systems
    Aricò, A
    Donatelli, M
    Serra-Capizzano, S
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) : 186 - 214
  • [3] ON THE RATE OF CONVERGENCE OF THE PRECONDITIONED CONJUGATE-GRADIENT METHOD
    AXELSSON, O
    LINDSKOG, G
    [J]. NUMERISCHE MATHEMATIK, 1986, 48 (05) : 499 - 523
  • [4] Isogeometric analysis using T-splines
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J. A.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 229 - 263
  • [5] On the sharpness of an asymptotic error estimate for conjugate gradients
    Beckermann, B
    Kuijlaars, ABJ
    [J]. BIT, 2001, 41 (05): : 856 - 867
  • [6] Superlinear convergence of conjugate gradients
    Beckermann, B
    Kuijlaars, ABJ
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) : 300 - 329
  • [7] On the asymptotic spectrum of finite element matrix sequences
    Beckermann, Bernhard
    Serra-Capizzano, Stefano
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) : 746 - 769
  • [8] Bertaccini D, 2005, NUMER MATH, V99, P441, DOI 10.1007/s00211 -004-0574-1
  • [9] Bhatia R., 2013, MATRIX ANAL
  • [10] Boor C.D., 2001, A Practical Guide to Splines