Immobilisation of sulphur on cathodes of lithium-sulphur batteries via B-doped atomic-layer carbon materials

被引:24
作者
Rao, Dewei [1 ]
Yang, Huan [1 ]
Shen, Xiangqian [1 ]
Yan, Xiaohong [1 ]
Qiao, Guanjun [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHENE PAPER; HIGH-CAPACITY; NITROGEN; LI; ELECTRODE; COMPOSITES; DENSITY; NETWORK; MATRIX;
D O I
10.1039/c8cp07736c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing new host materials for cathodes and exploring their binding mechanisms in lithium-sulphur batteries are crucial issues since the present host materials exhibit low sulphur entrapment properties, thus resulting in the rapid decay of overall performance. In this work, we systematically investigated B-doped atomic-layer carbon materials as the cathode hosts of lithium-sulphur batteries via density functional theory calculations. Based on the analysis of optimised molecular structures, binding energies and surface charge densities, we found that B-doping can help materials suppress the dissolution of sulphides during cycles, further improving the performance of lithium-sulphur batteries. Additionally, we concluded that the internal interactions among multiple Li2Sn-adsorbed structures facilitate the capture of Li2Sn. Furthermore, we found that B-doped graphdiyne is a promising host material since it exhibits a stronger attraction to Li2Sn than other selected materials and an outstanding sulphur loading of B70 wt%.
引用
收藏
页码:10895 / 10901
页数:7
相关论文
共 51 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Conductive Lewis Base Matrix to Recover the Missing Link of Li2S8 during the Sulfur Redox Cycle in Li-S Battery [J].
Chen, Jia-Jia ;
Yuan, Ru-Ming ;
Feng, Jia-Min ;
Zhang, Qian ;
Huang, Jing-Xin ;
Fu, Gang ;
Zheng, Ming-Sen ;
Ren, Bin ;
Dong, Quan-Feng .
CHEMISTRY OF MATERIALS, 2015, 27 (06) :2048-2055
[4]   Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes [J].
Chen, Liang ;
Feng, Jianrui ;
Zhou, Haihui ;
Fu, Chaopeng ;
Wang, Guichang ;
Yang, Liming ;
Xu, Chenxi ;
Chen, Zhongxue ;
Yang, Wenji ;
Kuang, Yafei .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (16) :7403-7415
[5]   Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Pei, Songfeng ;
Qian, Xitang ;
Hou, Peng-Xiang ;
Cheng, Hui-Ming ;
Liu, Chang ;
Li, Feng .
ACS NANO, 2016, 10 (09) :8676-8682
[6]   Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries [J].
Gao, Jie ;
Abruna, Hector D. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (05) :882-885
[7]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[8]   Free-Standing Nitrogen-doped Graphene Paper as Electrodes for High-Performance Lithium/Dissolved Polysulfide Batteries [J].
Han, Kai ;
Shen, Jingmei ;
Hao, Shiqiang ;
Ye, Hongqi ;
Wolverton, Christopher ;
Kung, Mayfair C. ;
Kung, Harold H. .
CHEMSUSCHEM, 2014, 7 (09) :2545-2553
[9]   The Importance of Pore Size and Surface Polarity for Polysulfide Adsorption in Lithium Sulfur Batteries [J].
Hippauf, Felix ;
Nickel, Winfried ;
Hao, Guang-Ping ;
Schwedtmann, Kai ;
Giebeler, Lars ;
Oswald, Steffen ;
Borchardt, Lars ;
Doerfler, Susanne ;
Weigand, Jan J. ;
Kaskel, Stefan .
ADVANCED MATERIALS INTERFACES, 2016, 3 (18)
[10]   Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium-Sulfur Batteries [J].
Huang, Jia-Qi ;
Zhuang, Ting-Zhou ;
Zhang, Qiang ;
Peng, Hong-Jie ;
Chen, Cheng-Meng ;
Wei, Fei .
ACS NANO, 2015, 9 (03) :3002-3011