Strictly Strong (n-1)-equilibrium in n-person Multicriteria Games

被引:0
作者
Kuzyutin, Denis V. [1 ]
Nikitina, Mariya V. [2 ]
Pankratova, Yaroslavna B. [1 ]
机构
[1] St Petersburg State Univ, Fac Appl Math & Control Proc, Univ Str Pr 35, St Petersburg 198504, Russia
[2] Int Banking Inst, Nevski Pr 60, St Petersburg 191023, Russia
来源
CONTRIBUTIONS TO GAME THEORY AND MANAGEMENT, VOL VII | 2014年 / 7卷
关键词
multicriteria games; Pareto equilibria; strong equilibrium; consistency; axiomatizations; CONSISTENCY; EQUILIBRIA;
D O I
暂无
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Using some specific approach to the coalition-consistency analysis in n-person multicriteria games we introduce two refinements of (weak Pareto) equilibria: the strong and strictly strong (n - 1)-equilibriums. Axiomatization of the strictly strong (n - 1)-equilibria (on closed families of multicriteria games) is provided in terms of consistency, strong one-person rationality, suitable variants of Pareto optimality and converse consistency axiom and others.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 15 条
[1]  
[Anonymous], 1959, Nav. Res. Logist. Quart., DOI [10.1002/nav.3800060107, DOI 10.1002/NAV.3800060107]
[2]  
Aumann R., 1959, CONTRIBUTIONS THEORY, V4, P287
[3]   COALITION-PROOF NASH EQUILIBRIA .1. CONCEPTS [J].
BERNHEIM, BD ;
PELEG, B ;
WHINSTON, MD .
JOURNAL OF ECONOMIC THEORY, 1987, 42 (01) :1-12
[4]   A perfectness concept for multicriteria games [J].
Borm, P ;
van Megen, F ;
Tijs, S .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1999, 49 (03) :401-412
[5]  
Kaplan G., 1992, THESIS
[6]  
Kuzyutin D., 2000, INT J MATH GAME THEO, V10, P217
[7]  
Kuzyutin D., 1995, VESTNIK SANKT PETERB, V1, P18
[8]  
Kuzyutin D, 2012, CONTRIB GAME THEOR, V5, P168
[10]   Equilibrium selection and consistency [J].
Norde, H ;
Potters, J ;
Reijnierse, H ;
Vermeulen, D .
GAMES AND ECONOMIC BEHAVIOR, 1996, 12 (02) :219-225