Constrained optimal discrimination designs for Fourier regression models

被引:11
|
作者
Biedermann, Stefanie [2 ]
Dette, Holger [1 ]
Hoffmann, Philipp [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
关键词
Constrained optimal designs; Trigonometric regression; D-1-optimal designs; Chebyshev polynomials; Canonical moments; POLYNOMIAL REGRESSION; EQUIVALENCE; SHAPE;
D O I
10.1007/s10463-007-0133-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, the problem of constructing efficient discrimination designs in a Fourier regression model is considered. We propose designs which maximize the power of the F-test, which discriminates between the two highest order models, subject to the constraints that the tests that discriminate between lower order models have at least some given relative power. A complete solution is presented in terms of the canonical moments of the optimal designs, and for the special case of equal constraints even more specific formulae are available.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 50 条
  • [41] Optimal designs for comparing regression models with correlated observations
    Dette, Holger
    Schorning, Kirsten
    Konstantinou, Maria
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 113 : 273 - 286
  • [42] Bayesian and maximin optimal designs for heteroscedastic regression models
    Dette, H
    Haines, LM
    Imhof, LA
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (02): : 221 - 241
  • [43] R-optimal designs for trigonometric regression models
    Lei He
    Rong-Xian Yue
    Statistical Papers, 2020, 61 : 1997 - 2013
  • [44] Optimal Designs for Regression Models with a Constant Coefficient of Variation
    Dette H.
    Müller W.G.
    Journal of Statistical Theory and Practice, 2013, 7 (4) : 658 - 673
  • [45] OPTIMAL DESIGNS FOR REGRESSION-MODELS WITH POSSIBLE BIAS
    NOTZ, WI
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 22 (01) : 43 - 54
  • [46] Optimal designs for rational models and weighted polynomial regression
    Dette, H
    Haines, LM
    Imhof, L
    ANNALS OF STATISTICS, 1999, 27 (04): : 1272 - 1293
  • [47] Optimal designs in random coefficient cubic regression models
    Luoma, A.
    Nummi, T.
    Sinha, Bikas K.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (11) : 3611 - 3617
  • [48] Optimal crossover designs for logistic regression models in pharmacodynamics
    Waterhouse, T. H.
    Eccleston, J. A.
    Duffull, S. B.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2006, 16 (06) : 881 - 894
  • [49] BAYESIAN OPTIMAL DESIGNS FOR LINEAR-REGRESSION MODELS
    ELKRUNZ, SM
    STUDDEN, WJ
    ANNALS OF STATISTICS, 1991, 19 (04): : 2183 - 2208
  • [50] D-Optimal designs for quadratic regression models
    van Berkum, EEM
    Pauwels, B
    Upperman, PM
    ADVANCES IN STOCHASTIC SIMULATION METHODS, 2000, : 189 - 195