Constrained optimal discrimination designs for Fourier regression models

被引:11
|
作者
Biedermann, Stefanie [2 ]
Dette, Holger [1 ]
Hoffmann, Philipp [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] Univ Southampton, Sch Math, Southampton SO17 1BJ, Hants, England
关键词
Constrained optimal designs; Trigonometric regression; D-1-optimal designs; Chebyshev polynomials; Canonical moments; POLYNOMIAL REGRESSION; EQUIVALENCE; SHAPE;
D O I
10.1007/s10463-007-0133-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, the problem of constructing efficient discrimination designs in a Fourier regression model is considered. We propose designs which maximize the power of the F-test, which discriminates between the two highest order models, subject to the constraints that the tests that discriminate between lower order models have at least some given relative power. A complete solution is presented in terms of the canonical moments of the optimal designs, and for the special case of equal constraints even more specific formulae are available.
引用
收藏
页码:143 / 157
页数:15
相关论文
共 50 条
  • [31] R-optimal designs for trigonometric regression models
    He, Lei
    Yue, Rong-Xian
    STATISTICAL PAPERS, 2020, 61 (05) : 1997 - 2013
  • [32] OPTIMAL DISCRIMINATING DESIGNS FOR SEVERAL COMPETING REGRESSION MODELS
    Braess, Dietrich
    Dette, Holger
    ANNALS OF STATISTICS, 2013, 41 (02): : 897 - 922
  • [33] D-optimal designs for Poisson regression models
    Wang, Yanping
    Myers, Raymond H.
    Smith, Eric. P.
    Ye, Keying
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (08) : 2831 - 2845
  • [34] Optimal designs for regression models with forced measurements at baseline
    Fedorov, VV
    Leonov, S
    MODA 7 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, PROCEEDINGS, 2004, : 61 - 69
  • [35] OPTIMAL EXPERIMENTAL DESIGNS FOR INVERSE QUADRATIC REGRESSION MODELS
    Dette, Holger
    Kiss, Christine
    STATISTICA SINICA, 2009, 19 (04) : 1567 - 1586
  • [36] Constructing K-optimal designs for regression models
    Zongzhi Yue
    Xiaoqing Zhang
    P. van den Driessche
    Julie Zhou
    Statistical Papers, 2023, 64 : 205 - 226
  • [37] D-OPTIMAL DESIGNS FOR POISSON REGRESSION MODELS
    Russell, K. G.
    Woods, D. C.
    Lewis, S. M.
    Eccleston, J. A.
    STATISTICA SINICA, 2009, 19 (02) : 721 - 730
  • [38] On optimal designs for high dimensional binary regression models
    Torsney, B
    Gunduz, N
    OPTIMUM DESIGN 2000, 2001, 51 : 275 - 285
  • [39] Optimal designs for heteroscedastic regression models with two parameters
    Zaigraev, A.
    Wilk, M.
    STATISTICS, 2020, 54 (02) : 291 - 309
  • [40] Optimal designs for dual response polynomial regression models
    Chang, FC
    Huang, MNL
    Lin, DKJ
    Yang, HC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 93 (1-2) : 309 - 322