Methoxy Formation Induced Defects on MoS2

被引:12
作者
Evans, Prescott E. [1 ]
Jeong, Hae Kyung [1 ,2 ]
Hooshmand, Zahra [3 ]
Le, Duy [3 ]
Rawal, Takat B. [3 ,4 ,5 ]
Alvillar, Sahar Naghibi [6 ]
Bartels, Ludwig [6 ]
Rahman, Talat S. [3 ,7 ]
Dowben, Peter A. [1 ]
机构
[1] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[2] Daegu Univ, Inst Basic Sci, Dept Phys, Gyongsan 712714, South Korea
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[4] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA
[5] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37830 USA
[6] Univ Calif Riverside, Pierce Hall, Riverside, CA 92521 USA
[7] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
基金
新加坡国家研究基金会;
关键词
MIXED ALCOHOL SYNTHESIS; ELASTIC BAND METHOD; METHANOL DECOMPOSITION; ELECTRONIC-STRUCTURE; SULFUR VACANCIES; CO HYDROGENATION; TIO2; 110; CATALYSTS; ADSORPTION; SURFACE;
D O I
10.1021/acs.jpcc.8b02053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We find that exposure of the MoS2 basal plane to methanol leads to the formation of adsorbed methoxy and coincides with sulfur vacancy generation. The conversion of methanol to methoxy on MoS2 is temperature dependent. Density functional theory simulations and experiment indicate that the methoxy moieties are bound to molybdenum, not sulfur, while some adsorbed methanol is readily desorbed near or slightly above room temperature. Our calculations also suggest that the dissociation of methanol via O-H bond scission occurs at the defect site (sulfur vacancy), followed subsequently by formation of a weakly bound H2S species that promptly desorbs from the surface with creation of new sulfur vacancy. Photoluminescence and scanning tunneling microscopy show clear evidence of the sulfur vacancy creation on the MoS2 surface, after exposure to methanol.
引用
收藏
页码:10042 / 10049
页数:8
相关论文
共 58 条
[1]   Effects of potassium doping on CO hydrogenation over MoS2 catalysts: A first-principles investigation [J].
Andersen, Amity ;
Kathmann, Shawn M. ;
Lilga, Michael A. ;
Albrecht, Karl O. ;
Hallen, Richard T. ;
Mei, Donghai .
CATALYSIS COMMUNICATIONS, 2014, 52 :92-97
[2]   ESCA STUDY OF TERMINATION OF PASSIVATION OF ELEMENTAL METALS [J].
BARR, TL .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (16) :1801-1810
[3]   Surface-induced spin state locking of the [Fe(H2B(pz)2)2(bipy)] spin crossover complex [J].
Beniwal, S. ;
Zhang, X. ;
Mu, S. ;
Naim, A. ;
Rosa, P. ;
Chastanet, G. ;
Letard, J-F ;
Liu, J. ;
Sterbinsky, G. E. ;
Arena, D. A. ;
Dowben, P. A. ;
Enders, A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (20)
[4]   Graphene-like Boron-Carbon-Nitrogen Monolayers [J].
Beniwal, Sumit ;
Hooper, James ;
Miller, Daniel P. ;
Costa, Paulo S. ;
Chen, Gang ;
Liu, Shih-Yuan ;
Dowben, Peter A. ;
Sykes, E. Charles H. ;
Zurek, Eva ;
Enders, Axel .
ACS NANO, 2017, 11 (03) :2486-2493
[5]   Dehydrogenation of methanol on Cu2O(100) and (111) [J].
Besharat, Zahra ;
Stenlid, Joakim Halldin ;
Soldemo, Markus ;
Marks, Kess ;
Onsten, Anneli ;
Johnson, Magnus ;
Ostrom, Henrik ;
Weissenrieder, Jonas ;
Brinck, Tore ;
Gothelid, Mats .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (24)
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   XPS, UPS AND THERMAL-DESORPTION STUDIES OF ALCOHOL ADSORPTION ON CU(110) .1. METHANOL [J].
BOWKER, M ;
MADIX, RJ .
SURFACE SCIENCE, 1980, 95 (01) :190-206
[8]   In situ study of selective oxidation of methanol to formaldehyde over copper [J].
Bukhtiyarov, VI ;
Prosvirin, IP ;
Tikhomirov, EP ;
Kaichev, VV ;
Sorokin, AM ;
Evstigneev, VV .
REACTION KINETICS AND CATALYSIS LETTERS, 2003, 79 (01) :181-188
[9]   Oxidation of methanol at copper surfaces [J].
Carley, AF ;
Owens, AW ;
Rajumon, MK ;
Roberts, MW ;
Jackson, SD .
CATALYSIS LETTERS, 1996, 37 (1-2) :79-87
[10]   A DFT study on the adsorption and dissociation of methanol over MoS2 surface [J].
Chen, Yan-Yan ;
Dong, Mei ;
Qin, Zhangfeng ;
Wen, Xiao-Dong ;
Fan, Weibin ;
Wang, Jianguo .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2011, 338 (1-2) :44-50