A fast adaptive multipole algorithm in three dimensions

被引:492
作者
Cheng, H
Greengard, L
Rokhlin, V
机构
[1] Yale Univ, Dept Comp Sci, New Haven, CT 06520 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
Laplace equation; translation operators; fast multipole method; adaptive algorithms;
D O I
10.1006/jcph.1999.6355
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an adaptive fast multipole method for the Laplace equation in three dimensions. It uses both new compression techniques and diagonal forms for translation operators to achieve high accuracy at a reasonable cost. (C) 1999 Academic Press.
引用
收藏
页码:468 / 498
页数:31
相关论文
共 50 条
  • [41] FMM-Yukawa: An adaptive fast multipole method for screened Coulomb interactions
    Huang, Jingfang
    Jia, Jun
    Zhang, Bo
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) : 2331 - 2338
  • [42] FAST UPDATING MULTIPOLE COULOMBIC POTENTIAL CALCULATION
    Hoft, Thomas A.
    Alpert, Bradley K.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (03) : A1038 - A1061
  • [43] An application of fast multipole method to isogeometric boundary element method for Laplace equation in two dimensions
    Takahashi, Toru
    Matsumoto, Toshiro
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (12) : 1766 - 1775
  • [44] Computational and memory complexities of Greengard-Rokhlin's fast multipole algorithm
    Nakashima, N
    Tateiba, M
    IEICE TRANSACTIONS ON ELECTRONICS, 2005, E88C (07): : 1516 - 1520
  • [45] An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation
    Shen, L.
    Liu, Y. J.
    COMPUTATIONAL MECHANICS, 2007, 40 (03) : 461 - 472
  • [46] Another preprocessing algorithm for generalized one-dimensional fast multipole method
    Suda, R
    Kuriyama, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (02) : 790 - 803
  • [47] Fast convolution quadrature for the wave equation in three dimensions
    Banjai, L.
    Kachanovska, M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 279 : 103 - 126
  • [48] FAST MULTIPOLE BOUNDARY ELEMENT METHOD FOR THREE DIMENSIONAL ELECTROMAGNETIC SCATTERING PROBLEM
    Wang, S. B.
    Zheng, H. H.
    Xiao, J. J.
    Lin, Z. F.
    Chan, C. T.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL MATERIALS SCIENCE AND ENGINEERING, 2012, 1 (04)
  • [49] An adaptive fast solver for the modified Helmholtz equation in two dimensions
    Cheng, HW
    Huang, JF
    Leiterman, TJ
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (02) : 616 - 637
  • [50] RECFMM: Recursive Parallelization of the Adaptive Fast Multipole Method for Coulomb and Screened Coulomb Interactions
    Zhang, Bo
    Huang, Jingfang
    Pitsianis, Nikos P.
    Sun, Xiaobai
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (02) : 534 - 550