Modeling Grain Boundary Motion and Dynamic Recrystallization in Pure Metals

被引:28
作者
Favre, Julien [1 ,2 ]
Fabregue, Damien [1 ]
Piot, David [2 ]
Tang, Ning [3 ]
Koizumi, Yuichiro [3 ]
Maire, Eric [1 ]
Chiba, Akihiko [3 ]
机构
[1] Univ Lyon, MATEIS CNRS UMR5510, INSA Lyon, F-69621 Villeurbanne, France
[2] Ecole Natl Super Mines, CNRS UMR 5146, Ctr SMS, F-42023 St Etienne, France
[3] Tohoku Univ, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2013年 / 44A卷 / 13期
关键词
HIGH-TEMPERATURE DEFORMATION; RATE-CONTROLLING MECHANISMS; HOT DEFORMATION; OFHC COPPER; PROCESSING MAPS; STRAIN-RATE; COBALT; NUCLEATION; KINETICS; RANGES;
D O I
10.1007/s11661-013-1914-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current study proposes a new approach of modeling discontinuous dynamic recrystallization in pure copper and cobalt based on the inverse analysis of experimental data. This approach comprises two steps: First, the mobility of grain boundaries is determined by a mean-field model in the steady state regime, then in a second step the information collected (mobility, nucleation frequency) is used to determine the mechanical behavior and the grain size change. The nucleation criterion is reformulated in a more general expression, and a new expression of the nucleation frequency with a single empirical parameter is proposed. The model predicts the stress-strain curves and the evolution of mean grain size, and is in good agreement with experimental data for both copper and cobalt. The modeling procedure requires a minimum of initial material parameters and could be especially attractive in the case of complex metals and alloys for which these parameters are unknown. (c) The Minerals, Metals & Materials Society and ASM International 2013
引用
收藏
页码:5861 / 5875
页数:15
相关论文
共 28 条
[1]   RECRYSTALLIZATION PROCESS IN SOME POLYCRYSTALLINE METALS [J].
BAILEY, JE ;
HIRSCH, PB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 267 (1328) :11-&
[2]   Iso-work increment assumption for heterogeneous material behavior modelling [J].
Bouaziz, O ;
Buessler, P .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (1-2) :79-83
[3]  
BRYANT LF, 1968, T METALL SOC AIME, V242, P1145
[4]   Modelling discontinuous dynamic recrystallization using a physically based model for nucleation [J].
Cram, D. G. ;
Zurob, H. S. ;
Brechet, Y. J. M. ;
Hutchinson, C. R. .
ACTA MATERIALIA, 2009, 57 (17) :5218-5228
[5]   THE DEPENDENCE OF GRAIN-SIZE ON STRESS DURING DYNAMIC RECRYSTALLIZATION [J].
DERBY, B .
ACTA METALLURGICA ET MATERIALIA, 1991, 39 (05) :955-962
[6]   Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton [J].
Hallberg, Hakan ;
Wallin, Mathias ;
Ristinmaa, Matti .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (01) :25-34
[7]   On abnormal subgrain growth and the origin of recrystallization nuclei [J].
Holm, EA ;
Miodownik, MA ;
Rollett, AD .
ACTA MATERIALIA, 2003, 51 (09) :2701-2716
[8]  
Humphreys FJ, 2017, Recrystallization and Related Annealing Phenomena, Vthird
[9]   The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels [J].
Hutchinson, C. R. ;
Zurob, H. S. ;
Sinclair, C. W. ;
Brechet, Y. J. M. .
SCRIPTA MATERIALIA, 2008, 59 (06) :635-637
[10]   Aspects of Dynamic Recrystallization in Cobalt at High Temperatures [J].
Kapoor, R. ;
Paul, B. ;
Raveendra, S. ;
Samajdar, I. ;
Chakravartty, J. K. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2009, 40A (04) :818-827