Modeling Grain Boundary Motion and Dynamic Recrystallization in Pure Metals

被引:27
作者
Favre, Julien [1 ,2 ]
Fabregue, Damien [1 ]
Piot, David [2 ]
Tang, Ning [3 ]
Koizumi, Yuichiro [3 ]
Maire, Eric [1 ]
Chiba, Akihiko [3 ]
机构
[1] Univ Lyon, MATEIS CNRS UMR5510, INSA Lyon, F-69621 Villeurbanne, France
[2] Ecole Natl Super Mines, CNRS UMR 5146, Ctr SMS, F-42023 St Etienne, France
[3] Tohoku Univ, Inst Mat Res, Aoba Ku, Sendai, Miyagi 9808577, Japan
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2013年 / 44A卷 / 13期
关键词
HIGH-TEMPERATURE DEFORMATION; RATE-CONTROLLING MECHANISMS; HOT DEFORMATION; OFHC COPPER; PROCESSING MAPS; STRAIN-RATE; COBALT; NUCLEATION; KINETICS; RANGES;
D O I
10.1007/s11661-013-1914-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current study proposes a new approach of modeling discontinuous dynamic recrystallization in pure copper and cobalt based on the inverse analysis of experimental data. This approach comprises two steps: First, the mobility of grain boundaries is determined by a mean-field model in the steady state regime, then in a second step the information collected (mobility, nucleation frequency) is used to determine the mechanical behavior and the grain size change. The nucleation criterion is reformulated in a more general expression, and a new expression of the nucleation frequency with a single empirical parameter is proposed. The model predicts the stress-strain curves and the evolution of mean grain size, and is in good agreement with experimental data for both copper and cobalt. The modeling procedure requires a minimum of initial material parameters and could be especially attractive in the case of complex metals and alloys for which these parameters are unknown. (c) The Minerals, Metals & Materials Society and ASM International 2013
引用
收藏
页码:5861 / 5875
页数:15
相关论文
共 28 条
  • [1] RECRYSTALLIZATION PROCESS IN SOME POLYCRYSTALLINE METALS
    BAILEY, JE
    HIRSCH, PB
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 267 (1328): : 11 - &
  • [2] Iso-work increment assumption for heterogeneous material behavior modelling
    Bouaziz, O
    Buessler, P
    [J]. ADVANCED ENGINEERING MATERIALS, 2004, 6 (1-2) : 79 - 83
  • [3] BRYANT LF, 1968, T METALL SOC AIME, V242, P1145
  • [4] Modelling discontinuous dynamic recrystallization using a physically based model for nucleation
    Cram, D. G.
    Zurob, H. S.
    Brechet, Y. J. M.
    Hutchinson, C. R.
    [J]. ACTA MATERIALIA, 2009, 57 (17) : 5218 - 5228
  • [5] THE DEPENDENCE OF GRAIN-SIZE ON STRESS DURING DYNAMIC RECRYSTALLIZATION
    DERBY, B
    [J]. ACTA METALLURGICA ET MATERIALIA, 1991, 39 (05): : 955 - 962
  • [6] Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton
    Hallberg, Hakan
    Wallin, Mathias
    Ristinmaa, Matti
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (01) : 25 - 34
  • [7] On abnormal subgrain growth and the origin of recrystallization nuclei
    Holm, EA
    Miodownik, MA
    Rollett, AD
    [J]. ACTA MATERIALIA, 2003, 51 (09) : 2701 - 2716
  • [8] Humphreys FJ, 2017, Recrystallization and Related Annealing Phenomena, Vthird
  • [9] The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels
    Hutchinson, C. R.
    Zurob, H. S.
    Sinclair, C. W.
    Brechet, Y. J. M.
    [J]. SCRIPTA MATERIALIA, 2008, 59 (06) : 635 - 637
  • [10] Aspects of Dynamic Recrystallization in Cobalt at High Temperatures
    Kapoor, R.
    Paul, B.
    Raveendra, S.
    Samajdar, I.
    Chakravartty, J. K.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2009, 40A (04): : 818 - 827