Synchronized bioluminescence behavior of a set of fireflies involving fractional operators of Liouville-Caputo type

被引:14
作者
Escalante-Martinez, J. E. [1 ]
Gomez-Aguilar, J. F. [2 ]
Calderon-Ramon, C. [1 ]
Aguilar-Melendez, A. [3 ]
Padilla-Longoria, P. [4 ]
机构
[1] Univ Veracruzana, Fac Ingn Mecan & Elect, Av Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
[2] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[3] Univ Veracruzana, Fac Ingn Civil, Av Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
[4] Univ Nacl Autonoma Mexico, IIMAS, Circuito Escolar, Cd Univ, Mexico City 04510, DF, Mexico
关键词
Fractional calculus; Liouville-Caputo fractional derivative; synchronicity; fireflies; bioluminescence; Adams-Bashforth-Moulton method; CALCULUS;
D O I
10.1142/S1793524518500419
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a system of fractional differential equations that model the synchronized bioluminescence behavior of a set of fireflies put on two spatial arrangements is presented; the alternative representation of these equations contains fractional operators of Liouville-Caputo type. The objective of the model is to qualitatively recover synchronization and show that it is persistent. It is shown that the effort made by each firefly glow changes with respect to the number of male competitors and the distance between them. The conditions on biological parameters are interpreted.
引用
收藏
页数:25
相关论文
共 38 条
[1]   Monotone Convergence of Extended Iterative Methods and Fractional Calculus with Applications [J].
Anastassiou, George A. ;
Argyros, Ioannis K. ;
Kumar, Sunil .
FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) :241-253
[2]  
[Anonymous], 2003, INTRO APPL NONLINEAR, DOI DOI 10.1007/B97481
[3]  
[Anonymous], 1996, An Introduction to Computer Simulation Methods: Applications to Physical Systems
[4]  
[Anonymous], 2012, Series on Complexity, Nonlinearity and Chaos, DOI 10.1142/10044
[5]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[6]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[8]   Modeling the spread of Rubella disease using the concept of with local derivative with fractional parameter: Beta-Derivative [J].
Atangana, Abdon ;
Alkahtani, Badr Saad T. .
COMPLEXITY, 2016, 21 (06) :442-451
[9]   Challenges in fractional dynamics and control theory [J].
Baleanu, Dumitru ;
Caponetto, Riccardo ;
Tenreiro Machado, J. A. .
JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (09) :2151-2152
[10]  
Banu US, 2015, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATIONS TECHNOLOGIES (ICCCT 15), P286, DOI 10.1109/ICCCT2.2015.7292762