Experimental investigation on the effects of carbon nanotubes on mode I interlaminar fracture toughness of laminated composites

被引:11
|
作者
Kermansaravi, Misaq [1 ]
Pol, Mohammad Hossein [1 ]
机构
[1] Tafresh Univ, Dept Mech Engn, Tafresh, Iran
关键词
BEHAVIOR; DELAMINATION; NANOCOMPOSITES; NANOCLAY;
D O I
10.1002/pc.24246
中图分类号
TB33 [复合材料];
学科分类号
摘要
In this research, a small quantity of multiwalled carbon nanotubes was used in order to enhance the IFT and the tensile properties of glass fiber/epoxy composite laminates. For this purpose, the nanocomposite samples, which have 18 fiber-glass plain-weave layers were manufactured. The epoxy resin system is made of Epon828 resin with Epikure F205 as the hardener. The MWCNTs modified with hydroxide (-COOH) is also dispersed into the epoxy system as a reinforcement in a 0, 0.1, 0.5, and 1wt%. In addition, the tensile nanoresin and hybrid nanocomposite specimens were produced. In the tensile test of nanomatrixes, the maximum change in Young's modulus, ultimate strength, and fracture toughness of the samples is obtained in the 0.5 wt% sample, with a 31.2, 21.4, and 16.66% increase with respect to neat sample, respectively. Moreover, the results of the tensile test of hybrid nanocomposites show that the maximum change in fracture toughness, ultimate strength, and fracture strain of the samples is in the 0.5wt% sample, with a 12.6, 9.8, and 12.6% increase with respect to the neat sample, respectively. The result of the double cantilever beam test of hybrid nanocomposites indicates that the maximum change in value of the force and value of the energy of crack propagation in mode I interlaminar fracture is in 0.5wt% sample, with a 24.4 and 24.15% increase respect to the neat sample, respectively. Totally, it can be included that the 0.5wt% is the best value out of 3% of MWCNTs to be added. POLYM. COMPOS., 39:E797-E806, 2018. (c) 2016 Society of Plastics Engineers
引用
收藏
页码:E797 / E806
页数:10
相关论文
共 50 条
  • [31] Size effects and hydrothermal aging on mode I interlaminar fracture toughness of thick composite laminates
    Gao, Yan
    Lin, Zequn
    Gong, Chenxing
    Zhou, Yanquan
    Ling, Zihan
    Ye, Jing
    POLYMER COMPOSITES, 2025,
  • [32] Experimental characterization and numerical study on the interlaminar fracture toughness of carbon fibre reinforced polymer laminates reinforced with carbon nanotubes
    Kumar, M.
    Kumar, P.
    Bhadauria, S. S.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2022, 53 (12) : 1561 - 1574
  • [33] Effects of loading rates on mode I interlaminar fracture toughness of carbon/epoxy composite toughened by carbon nanotube films
    Li, Zhouyi
    Wang, Yu
    Cao, Junchao
    Meng, Xianghao
    Aamir, Raza Muhammad
    Lu, Weibang
    Suo, Tao
    COMPOSITES PART B-ENGINEERING, 2020, 200
  • [34] Effect of the characteristics of nylon microparticles on Mode-I interlaminar fracture toughness of carbon-fibre/epoxy composites
    Wang W.-T.
    Yu H.
    Potter K.
    Kim B.C.
    Composites Part A: Applied Science and Manufacturing, 2020, 138
  • [35] Thickness dependence of mode I interlaminar fracture toughness in a carbon fiber thermosetting composite
    Kravchenko, Oleksandr G.
    Kravchenko, Sergii G.
    Sun, Chin-Teh
    COMPOSITE STRUCTURES, 2017, 160 : 538 - 546
  • [36] Processing and Mode 1 Fracture Toughness of Carbon Fiber Composites Reinforced With Carbon Nanotubes
    Kim, Hansang
    COMPOSITES RESEARCH, 2011, 24 (05): : 39 - 43
  • [37] Effect of short multi-walled carbon nanotubes on the mode I fracture toughness of woven carbon fiber reinforced polymer composites
    Truong, Gia Toai
    Choi, Kyoung-Kyu
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 259
  • [38] Study of mode II interlaminar fracture toughness of laminated composites of glass and jute fibres in epoxy for structural applications
    Chandel, Pankaj Singh
    Tyagi, Y. K.
    Jha, Kanishk
    Kumar, Rajeev
    Sharma, Shubham
    Singh, Jujhar
    Ilyas, R. A.
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2021, 3 (04):
  • [39] Effect of fibre orientation on mode-I interlaminar fracture toughness of glass epoxy composites
    Shetty, MR
    Kumar, KRV
    Sudhir, S
    Raghu, P
    Madhuranath, AD
    Rao, RMVG
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2000, 19 (08) : 606 - 620
  • [40] Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer
    Arai, Masahiro
    Noro, Yukihiro
    Sugimoto, Koh-Ichi
    Endo, Morinobu
    COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (02) : 516 - 525