Generalized Wronskian and Grammian Solutions to a Isospectral B-type Kadomtsev-Petviashvili equation

被引:9
作者
Cheng, Jianjun [1 ]
Wang, Zhen [1 ]
Zhang, Hongqing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
isospectral BKP equation; Wronskian determinant; Grammian determinant; Young diagram; SOLITON-SOLUTIONS; KORTEWEG-DEVRIES;
D O I
10.1080/14029251.2014.894718
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generally speaking, the BKP hierarchy which only has Pfaffian solutions. In this paper, based on the Grammian and Wronskian derivative formulae, generalized Wronskian and Grammian determinant solutions are obtained for the isospectral BKP equation (the second member on the BKP hierarchy) in the Hirota bilinear form. Especially, with the help of the properties of the computing of Young diagram, we have first applied Young diagram proved the proposition of this paper. Moreover, by considering the different combinations of the entries in Wronskian, we obtain various types of Wronskian solutions.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
[41]   On critical behaviour in generalized Kadomtsev-Petviashvili equations [J].
Dubrovin, B. ;
Grava, T. ;
Klein, C. .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 333 :157-170
[42]   Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation [J].
Ma, Wen-Xiu ;
Abdeljabbar, Alrazi ;
Asaad, Magdy Gamil .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (24) :10016-10023
[43]   Direct linearization of the nonisospectral Kadomtsev-Petviashvili equation [J].
Feng, Wei ;
Zhao, Songlin ;
Zhang, Jianbing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (06) :1390-1399
[44]   On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation [J].
Khusnutdinova, K. R. ;
Klein, C. ;
Matveev, V. B. ;
Smirnov, A. O. .
CHAOS, 2013, 23 (01)
[45]   New soliton solutions for a Kadomtsev-Petviashvili (KP) like equation coupled to a Schrodinger equation [J].
Elboree, Mohammed K. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (10) :5966-5973
[46]   Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source [J].
Yong, Xuelin ;
Ma, Wen-Xiu ;
Huang, Yehui ;
Liu, Yong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (09) :3414-3419
[47]   SPECIAL TYPES OF ELASTIC RESONANT SOLITON SOLUTIONS OF THE KADOMTSEV-PETVIASHVILI II EQUATION [J].
Chen, Shihua ;
Zhou, Yi ;
Baronio, Fabio ;
Mihalache, Dumitru .
ROMANIAN REPORTS IN PHYSICS, 2018, 70 (01)
[48]   Vertex dynamics in multi-soliton solutions of Kadomtsev-Petviashvili II equation [J].
Zarmi, Yair .
NONLINEARITY, 2014, 27 (06) :1499-1523
[49]   Higher-order rogue wave solutions to the Kadomtsev-Petviashvili 1 equation [J].
Guo, Lijuan ;
Chabchoub, Amin ;
He, Jingsong .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 426
[50]   NUMERICAL STUDY OF BLOW-UP IN SOLUTIONS TO GENERALIZED KADOMTSEV-PETVIASHVILI EQUATIONS [J].
Klein, Christian ;
Peter, Ralf .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (06) :1689-1717