Survival analysis with incomplete genetic data

被引:1
作者
Lin, D. Y. [1 ]
机构
[1] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Case-cohort design; Case-control design; Censoring; Genome-wide association studies; Haplotypes; Next-generation sequencing; Nonparametric likelihood; Single nucleotide polymorphisms; Two-phase study; Women's Health Initiative; CASE-COHORT; ASSOCIATION; LIKELIHOOD; GENOME; DESIGN; MODELS;
D O I
10.1007/s10985-013-9262-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Genetic data are now collected frequently in clinical studies and epidemiological cohort studies. For a large study, it may be prohibitively expensive to genotype all study subjects, especially with the next-generation sequencing technology. Two-phase sampling, such as case-cohort and nested case-control sampling, is cost-effective in such settings but entails considerable analysis challenges, especially if efficient estimators are desired. Another type of missing data arises when the investigators are interested in the haplotypes or the genetic markers that are not on the genotyping platform used for the current study. Valid and efficient analysis of such missing data is also interesting and challenging. This article provides an overview of these issues and outlines some directions for future research.
引用
收藏
页码:16 / 22
页数:7
相关论文
共 16 条
  • [1] A haplotype map of the human genome
    Altshuler, D
    Brooks, LD
    Chakravarti, A
    Collins, FS
    Daly, MJ
    Donnelly, P
    Gibbs, RA
    Belmont, JW
    Boudreau, A
    Leal, SM
    Hardenbol, P
    Pasternak, S
    Wheeler, DA
    Willis, TD
    Yu, FL
    Yang, HM
    Zeng, CQ
    Gao, Y
    Hu, HR
    Hu, WT
    Li, CH
    Lin, W
    Liu, SQ
    Pan, H
    Tang, XL
    Wang, J
    Wang, W
    Yu, J
    Zhang, B
    Zhang, QR
    Zhao, HB
    Zhao, H
    Zhou, J
    Gabriel, SB
    Barry, R
    Blumenstiel, B
    Camargo, A
    Defelice, M
    Faggart, M
    Goyette, M
    Gupta, S
    Moore, J
    Nguyen, H
    Onofrio, RC
    Parkin, M
    Roy, J
    Stahl, E
    Winchester, E
    Ziaugra, L
    Shen, Y
    [J]. NATURE, 2005, 437 (7063) : 1299 - 1320
  • [2] [Anonymous], J ROYAL STAT SOC A
  • [3] COX DR, 1972, J R STAT SOC B, V34, P187
  • [4] Fried Linda P., 1991, Annals of Epidemiology, V1, P263
  • [5] A general framework for studying genetic effects and gene-environment interactions with missing data
    Hu, Y. J.
    Lin, D. Y.
    Zeng, D.
    [J]. BIOSTATISTICS, 2010, 11 (04) : 583 - 598
  • [6] JOHNSON SR, 1999, J BR MENOPAUSE SOC, V5, P155
  • [7] Kalbfleisch John D., 2002, STAT ANAL FAILURE TI
  • [8] Initial sequencing and analysis of the human genome
    Lander, ES
    Int Human Genome Sequencing Consortium
    Linton, LM
    Birren, B
    Nusbaum, C
    Zody, MC
    Baldwin, J
    Devon, K
    Dewar, K
    Doyle, M
    FitzHugh, W
    Funke, R
    Gage, D
    Harris, K
    Heaford, A
    Howland, J
    Kann, L
    Lehoczky, J
    LeVine, R
    McEwan, P
    McKernan, K
    Meldrim, J
    Mesirov, JP
    Miranda, C
    Morris, W
    Naylor, J
    Raymond, C
    Rosetti, M
    Santos, R
    Sheridan, A
    Sougnez, C
    Stange-Thomann, N
    Stojanovic, N
    Subramanian, A
    Wyman, D
    Rogers, J
    Sulston, J
    Ainscough, R
    Beck, S
    Bentley, D
    Burton, J
    Clee, C
    Carter, N
    Coulson, A
    Deadman, R
    Deloukas, P
    Dunham, A
    Dunham, I
    Durbin, R
    French, L
    [J]. NATURE, 2001, 409 (6822) : 860 - 921
  • [9] Likelihood-based inference on haplotype effects in genetic association studies
    Lin, DY
    Zeng, D
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) : 89 - 104
  • [10] Haplotype-based association analysis in cohort studies of unrelated individuals
    Lin, DY
    [J]. GENETIC EPIDEMIOLOGY, 2004, 26 (04) : 255 - 264