Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

被引:14
作者
Bragard, Jean [1 ]
Simic, Ana [1 ]
Elorza, Jorge [1 ]
Grigoriev, Roman O. [2 ]
Cherry, Elizabeth M. [3 ]
Gilmour, Robert F., Jr. [4 ]
Otani, Niels F. [3 ,5 ]
Fenton, Flavio H. [2 ]
机构
[1] Univ Navarra, Dept Phys & Appl Math, E-31080 Pamplona, Spain
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[3] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[4] Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada
[5] Cornell Univ, Dept Biomed Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
FAR-FIELD; DEFIBRILLATION EFFICACY; WAVE-FORMS; MECHANISM; ALTERNANS; MODEL; ANNIHILATION; FIBRILLATION; STIMULATION; SIMULATION;
D O I
10.1063/1.4829632
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 x 10(6) simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Shock-induced plastic deformation of nanopowder Ti during consolidation and spallation
    He, Debing
    Wang, Mingyang
    Bi, Wenbo
    Wang, Liang
    RSC ADVANCES, 2024, 14 (12) : 8455 - 8463
  • [42] Fluvastatin attenuates severe hemorrhagic shock-induced organ damage in rats
    Lee, Chia-Chi
    Lee, Ru-Ping
    Subeq, Yi-Maun
    Lee, Chung-Jen
    Chen, Tse-Min
    Hsu, Bang-Gee
    RESUSCITATION, 2009, 80 (03) : 372 - 378
  • [43] Shock-induced figure-of-eight reentry in the isolated rabbit heart
    Banville, I
    Gray, RA
    Ideker, RE
    Smith, WM
    CIRCULATION RESEARCH, 1999, 85 (08) : 742 - 752
  • [44] Multiscale dislocation dynamics simulations of shock-induced plasticity in small volumes
    Shehadeh, Mutasem A.
    PHILOSOPHICAL MAGAZINE, 2012, 92 (10) : 1173 - 1197
  • [45] Improved scaling laws for the shock-induced dispersal of a dense particle curtain
    DeMauro, Edward P.
    Wagner, Justin L.
    DeChant, Lawrence J.
    Beresh, Steven J.
    Turpin, Aaron M.
    JOURNAL OF FLUID MECHANICS, 2019, 876 : 881 - 895
  • [46] Shock-induced systemic hyperfibrinolysis is attenuated by plasma-first resuscitation
    Moore, Hunter B.
    Moore, Ernest E.
    Morton, Alexander P.
    Gonzalez, Eduardo
    Fragoso, Miguel
    Chapman, Michael P.
    Dzieciatkowska, Monika
    Hansen, Kirk C.
    Banerjee, Anirban
    Sauaia, Angela
    Silliman, Christopher C.
    JOURNAL OF TRAUMA AND ACUTE CARE SURGERY, 2015, 79 (06) : 897 - 903
  • [47] Numerical modeling of shock-induced damage for granite under dynamic loading
    Ai, H. A.
    Ahrens, T. J.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2005, PTS 1 AND 2, 2006, 845 : 1431 - 1434
  • [48] Mapping microstructure to shock-induced temperature fields using deep learning
    Li, Chunyu
    Verduzco, Juan Carlos
    Lee, Brian H.
    Appleton, Robert J.
    Strachan, Alejandro
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [49] Shock-Induced Phase Transitions from Gas Phase to Solid Phase
    Taniguchi, Shigeru
    Zhao, Nanrong
    Sugiyama, Masaru
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (08)
  • [50] Shock-Induced Phase Transitions in Systems of Hard Spheres with Attractive Interactions
    Taniguchi, Shigeru
    Sugiyama, Masaru
    ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 473 - 483