Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

被引:14
作者
Bragard, Jean [1 ]
Simic, Ana [1 ]
Elorza, Jorge [1 ]
Grigoriev, Roman O. [2 ]
Cherry, Elizabeth M. [3 ]
Gilmour, Robert F., Jr. [4 ]
Otani, Niels F. [3 ,5 ]
Fenton, Flavio H. [2 ]
机构
[1] Univ Navarra, Dept Phys & Appl Math, E-31080 Pamplona, Spain
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[3] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[4] Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada
[5] Cornell Univ, Dept Biomed Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
FAR-FIELD; DEFIBRILLATION EFFICACY; WAVE-FORMS; MECHANISM; ALTERNANS; MODEL; ANNIHILATION; FIBRILLATION; STIMULATION; SIMULATION;
D O I
10.1063/1.4829632
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 x 10(6) simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Atomistic insight into the shock-induced bubble collapse in water
    Rawat, Sunil
    Mitra, Nilanjan
    PHYSICS OF FLUIDS, 2023, 35 (09)
  • [22] Shock-induced ignition with single step Arrhenius kinetics
    Melguizo-Gavilanes, J.
    Rezaeyan, N.
    Tian, M.
    Bauwens, L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (03) : 2374 - 2380
  • [23] Shock-induced compaction of nanoparticle layers into nanostructured coating
    Mayer, Alexander E.
    Ebel, Andrei A.
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (16)
  • [24] Molecular dynamics simulations of shock-induced plasticity in tantalum
    Tramontina, Diego
    Erhart, Paul
    Germann, Timothy
    Hawreliak, James
    Higginbotham, Andrew
    Park, Nigel
    Ravelo, Ramon
    Stukowski, Alexander
    Suggit, Mathew
    Tang, Yizhe
    Wark, Justin
    Bringa, Eduardo
    HIGH ENERGY DENSITY PHYSICS, 2014, 10 : 9 - 15
  • [25] Shock Loading of Granular Ni/Al Composites. Part 2: Shock-Induced Chemistry
    Cherukara, Mathew J.
    Germann, Timothy C.
    Kober, Edward M.
    Strachan, Alejandro
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (12) : 6804 - 6813
  • [26] Shock-induced ignition with three-step chain-branching kinetics
    Gavilanes, Josue Melguizo
    Bauwens, Luc
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS, 2011, 72 (5-6) : 169 - 173
  • [27] The shock-induced dispersal of particle curtains with varying material density
    Daniel, Kyle A.
    Wagner, Justin L.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2022, 152
  • [28] Shock-induced reactions in metal nitride - Boron nanostructured composites
    Chapman, Wesley W.
    Ornek, Metin
    Pauls, Joshua M.
    Zhukovskyi, Maksym
    Son, Steven F.
    Mukasyan, Alexander S.
    SCRIPTA MATERIALIA, 2020, 189 (189) : 58 - 62
  • [29] Numerical Investigation of the Effects of Nonuniform Premixing on Shock-Induced Combustion
    Iwata, Kazuya
    Nakaya, Shinji
    Tsue, Mitsuhiro
    AIAA JOURNAL, 2016, 54 (05) : 1682 - 1692
  • [30] Revisiting unsteady shock-induced combustion with modern analysis techniques
    Pavalavanni, Pradeep Kumar
    Sohn, Chae Hoon
    Lee, Bok Jik
    Choi, Jeong-Yeol
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2019, 37 (03) : 3637 - 3644