Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

被引:14
作者
Bragard, Jean [1 ]
Simic, Ana [1 ]
Elorza, Jorge [1 ]
Grigoriev, Roman O. [2 ]
Cherry, Elizabeth M. [3 ]
Gilmour, Robert F., Jr. [4 ]
Otani, Niels F. [3 ,5 ]
Fenton, Flavio H. [2 ]
机构
[1] Univ Navarra, Dept Phys & Appl Math, E-31080 Pamplona, Spain
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[3] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[4] Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada
[5] Cornell Univ, Dept Biomed Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
FAR-FIELD; DEFIBRILLATION EFFICACY; WAVE-FORMS; MECHANISM; ALTERNANS; MODEL; ANNIHILATION; FIBRILLATION; STIMULATION; SIMULATION;
D O I
10.1063/1.4829632
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 x 10(6) simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Shock-induced damage and dynamic fracture in cylindrical bodies submerged in liquid
    Cao, Shunxiang
    Zhang, Ying
    Liao, Defei
    Zhong, Pei
    Wang, Kevin G.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 169 : 55 - 71
  • [12] Interplay of Surface Deformation and Shock-Induced Separation in Shock/Boundary-Layer Interactions
    Brouwer, Kirk R.
    Gogulapati, Abhijit
    McNamara, Jack J.
    AIAA JOURNAL, 2017, 55 (12) : 4258 - 4273
  • [13] Thermal effect in shock-induced gas filtration through porous media
    Li, Jiarui
    Chen, Jun
    Tian, Baolin
    Xiang, Meizhen
    Xue, Kun
    JOURNAL OF FLUID MECHANICS, 2024, 999
  • [14] Shock-tunnel investigations on the evolution and morphology of shock-induced large separation bubbles
    Sriram, R.
    Jagadeesh, G.
    AERONAUTICAL JOURNAL, 2016, 120 (1229) : 1123 - 1152
  • [15] Shock priming enhances the efficacy of SSRIs in the foot shock-induced ultrasonic vocalization test
    Kassai, Ferenc
    Gyertyan, Istvan
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2012, 36 (01) : 128 - 135
  • [16] PIV study on a shock-induced separation in a transonic flow
    Sartor, Fulvio
    Losfeld, Gilles
    Bur, Reynald
    EXPERIMENTS IN FLUIDS, 2012, 53 (03) : 815 - 827
  • [17] Shock-induced Polymorphic Phase Transition and Spallation in Iron
    Pei, Xiao-Yang
    Li, Ping
    Yu, Ji-Dong
    He, Hong-Liang
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2010, 11 : 231 - 234
  • [18] Aerodynamic principles of shock-induced combustion ramjet engines
    Ma, Kaifu
    Zhang, Zijian
    Liu, Yunfeng
    Jiang, Zonglin
    AEROSPACE SCIENCE AND TECHNOLOGY, 2020, 103
  • [19] Shock-induced Stoneley waves in carbonate rock samples
    Li, Ning
    Wang, Kewen
    Wu, Hongliang
    Feng, Qingfu
    Fan, Huajun
    Smeulders, David
    GEOPHYSICS, 2019, 84 (05) : D209 - D216
  • [20] Deformation behavior of liquid droplet in shock-induced atomization
    Mizuno, K.
    Yada, T.
    Kamiya, T.
    Asahara, M.
    Miyasaka, T.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2022, 155