Shock-induced termination of reentrant cardiac arrhythmias: Comparing monophasic and biphasic shock protocols

被引:14
|
作者
Bragard, Jean [1 ]
Simic, Ana [1 ]
Elorza, Jorge [1 ]
Grigoriev, Roman O. [2 ]
Cherry, Elizabeth M. [3 ]
Gilmour, Robert F., Jr. [4 ]
Otani, Niels F. [3 ,5 ]
Fenton, Flavio H. [2 ]
机构
[1] Univ Navarra, Dept Phys & Appl Math, E-31080 Pamplona, Spain
[2] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[3] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
[4] Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada
[5] Cornell Univ, Dept Biomed Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
FAR-FIELD; DEFIBRILLATION EFFICACY; WAVE-FORMS; MECHANISM; ALTERNANS; MODEL; ANNIHILATION; FIBRILLATION; STIMULATION; SIMULATION;
D O I
10.1063/1.4829632
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we compare quantitatively the efficiency of three different protocols commonly used in commercial defibrillators. These are based on monophasic and both symmetric and asymmetric biphasic shocks. A numerical one-dimensional model of cardiac tissue using the bidomain formulation is used in order to test the different protocols. In particular, we performed a total of 4.8 x 10(6) simulations by varying shock waveform, shock energy, initial conditions, and heterogeneity in internal electrical conductivity. Whenever the shock successfully removed the reentrant dynamics in the tissue, we classified the mechanism. The analysis of the numerical data shows that biphasic shocks are significantly more efficient (by about 25%) than the corresponding monophasic ones. We determine that the increase in efficiency of the biphasic shocks can be explained by the higher proportion of newly excited tissue through the mechanism of direct activation. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Shock-induced collapse of surface nanobubbles
    Dockar, Duncan
    Gibelli, Livio
    Borg, Matthew K.
    SOFT MATTER, 2021, 17 (28) : 6884 - 6898
  • [2] Biphasic versus monophasic shock for external cardioversion of atrial flutter
    Mortensen, Kai
    Risius, Tim
    Schwemer, Tjark F.
    Aydin, Muhammet Ali
    Koester, Ralf
    Klemm, Hanno U.
    Lutomsky, Boris
    Meinertz, Thomas
    Ventura, Rodolfo
    Willems, Stephan
    CARDIOLOGY, 2008, 111 (01) : 57 - 62
  • [3] The onset of shock-induced particle jetting
    Xue, Kun
    Cui, Haoran
    Du, Kaiyuan
    Shi, Xiaoliang
    Gan, Yixiang
    Bai, Chunhua
    POWDER TECHNOLOGY, 2018, 336 : 220 - 229
  • [4] Fingerprinting shock-induced deformations via diffraction
    Mishra, Avanish
    Kunka, Cody
    Echeverria, Marco J.
    Dingreville, Remi
    Dongare, Avinash M.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Shock-induced phase transformation in nanocrystalline iron
    Ma Wen
    Zhu Wen-Jun
    Zhang Ya-Lin
    Jing Fu-Qian
    ACTA PHYSICA SINICA, 2011, 60 (06)
  • [6] Unconfined shock experiments: A pilot study into the shock-induced melting and devolatilization of calcite
    Horz, Friedrich
    Cintala, Mark J.
    Thomas-Keprta, Kathie L.
    Ross, Daniel K.
    Clemett, Simon J.
    METEORITICS & PLANETARY SCIENCE, 2020, 55 (01) : 102 - 129
  • [7] A numerical study of shock-induced cavity collapse
    Ozlem, M.
    Schwendeman, D. W.
    Kapila, A. K.
    Henshaw, W. D.
    SHOCK WAVES, 2012, 22 (02) : 89 - 117
  • [8] Shock-Induced Damage Mechanism of Perineuronal Nets
    Al Mahmud, Khandakar Abu Hasan
    Hasan, Fuad
    Khan, Md Ishak
    Adnan, Ashfaq
    BIOMOLECULES, 2022, 12 (01)
  • [9] Numerical and theoretical study on shock-induced coalescence of He bubbles
    Wu, Wei-Dong
    Shao, Jian-Li
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 234
  • [10] Numerical study of pressure loads generated by a shock-induced bubble collapse
    da Silva, Eric Goncalves
    Parnaudeau, Philippe
    PHYSICS OF FLUIDS, 2021, 33 (11)