ON CENTRALIZERS OF PRIME RINGS WITH INVOLUTION

被引:0
|
作者
Ali, S. [1 ]
Dar, N. A. [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci & Arts Rabigh, Dept Math, Jaddeh 21589, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Prime ring; normal ring; involution; left centralizer; centralizer; AUTOMORPHISMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring with involution *. An additive mapping T : R -> R is called a left(respectively right) centralizer if T(xy) = T(x)y (respectively T(xy) = xT(y)) for all x, y is an element of R. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
引用
收藏
页码:1465 / 1475
页数:11
相关论文
共 50 条
  • [21] Strong commutativity preserving maps in prime rings with involution
    Lin, Jer-Shyong
    Liu, Cheng-Kai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) : 14 - 23
  • [22] A note on certain additive maps in prime rings with involution
    Siddeeque, Mohammad Aslam
    Shikeh, Abbas Hussain
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (02): : 367 - 379
  • [23] Structure of some additive maps in prime rings with involution
    Mohammad Aslam Siddeeque
    Abbas Hussain Shikeh
    Raof Ahmad Bhat
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (2)
  • [24] On τ-centralizers of semiprime rings
    E. Albaş
    Siberian Mathematical Journal, 2007, 48 : 191 - 196
  • [25] A characterization of two-sided centralizers on prime rings
    Vukman, Joso
    Fosner, Maja
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1431 - 1441
  • [26] Centralizers of generalized derivations on multilinear polynomials in prime rings
    Carini, L.
    De Filippis, V.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (06) : 1051 - 1060
  • [27] Centralizers of generalized derivations on multilinear polynomials in prime rings
    L. Carini
    V. De Filippis
    Siberian Mathematical Journal, 2012, 53 : 1051 - 1060
  • [28] A note on computing involution centralizers
    Ballantyne, John
    Rowley, Peter
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 54 : 1 - 8
  • [29] On n-skew Lie Products on Prime Rings with Involution
    Ali, Shakir
    Mozumder, Muzibur Rahman
    Khan, Mohammad Salahuddin
    Abbasi, Adnan
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (01): : 43 - 55
  • [30] ON SKEW JORDAN PRODUCT AND GENERALIZED DERIVATIONS IN PRIME RINGS WITH INVOLUTION
    Malleswari, G. Naga
    Sreenivasulu, S.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2024, 63 (04): : 329 - 334